По теореме Виетта х1+х2= -b x1*x2 = c 1) D>0, a<0, b>0, c<0. Получаем уравнение вида -ax^2+bx-c=0. Разницы нет будем мы находить корни при а положительном или отрицательном, корни либо буду оба положительны либо отрицательны либо один отрицательный один положительный, поэтому проще будет если а будет положительным. Умножим на (-1). Получим ax^2-bx+c=0. с положительно, b отрицательно, значит х1 и х2 положительные корни. 2) a>0, c<0. Получаем ax^2+bx-c=0. c отрицательно, b положительно, значит произведение корней отрицательно и один из корней отрицательный, а другой положительный.
имеет 1 корень?
уравнение x^2 - (a+2) x+a+5 = 0 имеет 1 корень ⇔D=0
D=(a+2)²-4(a+5 )= а²+4а+4 - 4а-20=а²-16 = 0 ⇔
1) а=4 2) а= -16