y=11+6√x-2x√x D(f)=x∈(0:+∞)
2x√x=2*x¹*x¹/₂=2*x³/²
6√x=6*x¹/²
f(x)=-2*x³/²+6*x¹/²+11
(2*x³/²)`=3*x¹/²=3√x
(6*x¹/²)`=3/x¹/²=3/√x
(11)`=0
f`(x)=-3√x+3/√x
Приравниваем производную к нулю:
-3√x+3/√x=0
-3√x*√х+3=0
-3х+3=0
-3х=-3
х=1 - критическая точка.
Чтобы узнать, достигает ли функция максимума в точке экстремума х=1, нужно определить знаки производной методом интервалов (рисунок во вложении):
f`(1)=0
f`(0.25)=-3√0.25+3/√0.25=4.5>0 - функция возрастает на отрезке (0;1)
f`(4)=-3√4+3/√4=-4.5<0 - функция убывает на отрезке (1;+∞)
При переходе через точку х=1 производная меняет знак с "+" на "-", значит х=1 - точка максимума функции.
Пусть х^2 - 7 = а
а^2 + 6а - 16 = 0
D = 36 + 64 = 100 ; V D = 10
a1 = ( - 6 + 10 ) : 2 = 2
a2 = ( - 6 - 10 ) : 2 = - 8
x^2 - 7 = 2
x^2 = 9
x1 = 3 ; x2 = - 3
x^2 - 7 = - 8
x^2 = - 1 ( нет решений )
ответ : 3 ; ( - 3 )