A,b- катеты с - гипотенуза a=c-4 b=c-2 a^+b^2=c^2 (c-4)^2+(c-2)^2=c^2 c^2-12c+20=0 корень можно найти по Виету или через дискриминант: с1=2, с2=10 правильный ответ с=10, так как первый корень не соответсвует данным задачи
1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
с - гипотенуза
a=c-4
b=c-2
a^+b^2=c^2
(c-4)^2+(c-2)^2=c^2
c^2-12c+20=0
корень можно найти по Виету или через дискриминант: с1=2, с2=10
правильный ответ с=10, так как первый корень не соответсвует данным задачи