Решение: Периметр треугольника равен сумме трёх его сторон. Одна сторона известна-это гипотенуза, равная 3√5 (см) Найдем катеты, обозначив один катет за (х)см, тогда второй катет будет равным (х+3)см Применим Теорему Пифагора: с²=а²+в² (3√5)²=х² +(х+3)² 9*5=х²+х²+6х+9 45=2х²+6х+9 2х²+6х+9-45=0 2х²+6х-36=0 х1.2=(-6+-D)2*2 D=√(36-4*2*-36)=√(36+288)=√324=18 х1,2=(-6+-18)/4 х1=(-6+18)/4=12/4=3 х2=(-6-18)/4=-24/4=-6- не соответствует условию задания Отсюда: первый катет, обозначенный за х=3 см, второй катет х+3=3+3=6см Периметр прямоугольного треугольника равен: 3√5+3+6=(3√5+6) см
1) Упростим функцию: При , функция принимает вид: - парабола ветвями вниз
При , функция принимает вид: - парабола ветвями вверх
2) Построим график этой функции (см. прикрепленный файл). 3) Прямая не должна касаться части графика . Найдем, при каких к прямая будет касательной к графику: При k=-2 прямая y=-2x+9 будет касаться части графика нашей функции, при этом будет иметь три общих точки.
4) Принадлежат ли графику точки: (4;0), (2;4) - нет при k=-2.5 - да
5) При k∈(-бесконечность; -2) U (-2; +бесконечность) прямая y=kx+9 будет иметь с графиком две общие точки.