Дана функция f(x)=12x-x³ найти а) промежутки возрастания и убывания. Находим производную. y' = 12 - 3x² и приравняем нулю. 12 - 3x² = 3(4 - x²) = 0. Отсюда находим 2 критические точки: х = 2 и х = -2. Имеем 3 промежутка монотонности: (-∞; -2), (-2; 2) и (2; +∞). На промежутках находим знаки производной. Где производная положительна - функция возрастает, где отрицательна - там убывает. x = -3 -2 0 2 3 y' = -15 0 12 0 -15. Функция возрастает на промежутке (-2; 2), убывает на промежутках (-∞; -2) и (2; +∞).
б) точки мах и min. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума. В точке х = -2 минимум функции, в точке х = 2 максимум функции.
в) наибольшее и наименьшее значение на [-1;3]. Минимум на этом промежутке в точке х = -1, у = 12*(-1)-(-1)³ = -11. Максимум по пункту б) в точке х = 2.
Пусть скорость товарного поезда х, тогда скорость скоростного равна х+20 Пусть скоростной поезд проехал 400км за у часов тогда товарный поезд это расстояние за у+1 часов Запишем эти условия в виде уравнения х*(у+1)=400 это для товарного поезда (х+20)*у=400 - для скорого поезда. Из первого уравнения найдем х и поставим во второе уравнение (400/(у+1)+20)*у=400умножим обе части уравнения на (у+1) 400у+20у(у+1)=400(у+1) 400у+20у^2+20у=400у+400 20у^2+20у-400=0 у^2+у-20=0 D=1^2-4*1*(-20)=81 y(1)=(-1+✓81)/2=4 часа у(2)=-5 время не может быть отрицательным. Найдем х=400/(1+5)=80км/ч. - скорость товарного поезда. 80+20=100 км/ч скорость скоростного поезда!)
tgα∗ctgα=1
а) tg \alpha =2tgα=2 ctg \alpha =1:2= 0,5ctgα=1:2=0,5
\frac{tg a+ctg a}{tg a-ctg a}= \frac{2+0,5}{2-0,5}= \frac{2,5}{1,5}= \frac{5}{3}=1 \frac{2}{3}
tga−ctga
tga+ctga
=
2−0,5
2+0,5
=
1,5
2,5
=
3
5
=1
3
2
б) \frac{sin \alpha }{cos \alpha }=2
cosα
sinα
=2 sin \alpha =2*cos \alphasinα=2∗cosα
\frac{sin a -cos a}{sin a+cos a} = \frac{2*cos a-cos a}{2*cos a+cos a}= \frac{cosa}{3cosa} = \frac{1}{3}
sina+cosa
sina−cosa
=
2∗cosa+cosa
2∗cosa−cosa
=
3cosa
cosa
=
3
1
в) \frac{2sin a+3cos a}{3sin a-7cos a} = \frac{4cos a+3cos a}{6cos a-7cos a} = \frac{7cos a}{-cos a}= \frac{7}{-1}=-7
3sina−7cosa
2sina+3cosa
=
6cosa−7cosa
4cosa+3cosa
=
−cosa
7cosa
=
−1
7
=−7
г) \frac{sin^2a+2cos^2 a}{sin^2a-2cos^2 a}= \frac{(2*cos a)^2+2cos^2 a}{(2*cos a)^2-2cos^2 a}= \frac{4cos^2 a+2cos^2 a}{4cos^2 a-2cos^2 a}= \frac{6cos^2 a}{2cos^2 a} = \frac{6}{2}=3
sin
2
a−2cos
2
a
sin
2
a+2cos
2
a
=
(2∗cosa)
2
−2cos
2
a
(2∗cosa)
2
+2cos
2
a
=
4cos
2
a−2cos
2
a
4cos
2
a+2cos
2
a
=
2cos
2
a
6cos
2
a
=
2
6
=3