а)f'(x) =6x-6x²=6x(1-x). Критические точки из уравнения 6х(1-х)=0.
х=0 и х=1.
Обе точки на данном интервале. -1___-___0___+___1-__2 .
Знаки можно не определять, а обойтись только сравнением значений.
у(-1)=3*(-1)²-2*(-1)³ = 5.
у(0)=0
у(1)=1
у(2)=-4. Сравниваем. Наибольшее равно 5, наименьшее равно -4.
Во втором полная аналогия, f'(x)=3x²-12x=3x(x-4).
Критические точки 0 и 4, на интервале только 0.
Вычисляем у(-2)=-32, у(0)=1, у(1)=-4. Наибольшее равно 1, наименьшее -32.
в)f'(x)=5cosx-2sin2x.
Критические точки из уравнения 5cosx-4sinx*cosx=0
cosx=0 или sinx=5/4. x=π/2, а во втором корней нет. Сравниваем
у(0)=0+1=1, у(π/2)=5-1=4 и у(π) 0+1=1. Наибольшее 4, наименьшее 1.
1. а) значение аргумента равно 3, тогда значение функции:
б) Согласно условию значение функции равно 5, то есть,
, то значение аргумента найдем, решив следующее уравнение:
в) Подставляя координаты точки В в график уравнения, получим
Раз выполняется тождество, следовательно, график
проходит через точку В(-1;5).
2. Графиком линейной функции является прямая. Для построения прямой достаточно взять две точки, например:![\tt (0;-4),~(\frac{4}{5} ;0).](/tpl/images/0559/9002/b00ad.png)
а) значению аргумента
соответствует значение функции ![\tt y=1](/tpl/images/0559/9002/30097.png)
б) значению функции
соответствует значение аргумента ![\tt x=2](/tpl/images/0559/9002/e3730.png)
3. Точки пересечения с осью координат Х. График функции пересекает ось Х при
, значит нужно решить уравнение:
Точки пересечения с осью координат У. График пересекает ось У, когда
, то есть, подставляя х=0 в график уравнения, получим
4. Раз график функции
проходит через точку
, значит значение
найдем, подставив координаты точки C, имеем