Находим производную. Она равна 12х²-6х=6х(2х-1)
Приравниваем производную к нулю. Получим два корня х=0 и х=0,5
Разбиваем на промежутки числовую ось (-∞;0)(0;0,5)(0,5;+∞)
С метода интервалов устанавливаем знак на каждом интервале.
на первом интервале и на последнем получились знаки плюс, на втором минус, значит, точка х= о- точка максимума, т.к. при переходе через нее производная меняет знак с плюса на минус, а сам максимум равен 4-0³-3*0²=0,
а х=0,5 - точка минимума, т.к. при переходе через нее производная меняет знак с минуса на плюс. Значение экстремума равно
4*(0,5)³-3*(0,5)²=0,5²*(4*0,5-3)=-0,25
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
-2x+6y=-4
если умножить первое уравнение на 2, то получится:
2х-6у=4
-2х+6у=-4
всё сократиться и получится 0=0