Необходимо было решить 2 первые задачи из документа, но я решил ещё и параметр, который мне понравился.
12. Необходимо решить уравнение
Формула двойного угла
А также , как известно, добавление или вычитание целого периода из аргумента тригонометрической функции ничего не меняет.
Так как в выражении в скобках присутствует половинный аргумент при , то косинус поменяется на синус, знак будет отрицательным, потому что если считать, что
находится в первой координатной четверти, то при вычислении выражения в скобках значение будет в третьей четверти, где обе функции отрицательны.
Получаем уравнение , которое поделим на
Первая часть готова, осталось проанализировать каждую серию решений на принадлежность промежутку
Здесь подойдут
Анализируем 2 оставшиеся серии:
Здесь уже необходимо рассматривать отдельно.
Первое с "+" возьмем:
В последней серии решений та же логика, просто исходно дробь будет со знаком "-", значит, в обе части двойного неравенства пойдет с "+"
Теперь можно записывать ответ:
Переходим к 13. Это неравенство.
Сразу видно, что можно заменить на переменную, и тогда неравенство станет куда проще.
Если знаменатель больше нуля, то и неравенство будет больше 0. Особый случай - когда числитель равен 1, но , поэтому решением этого неравенство является
Возвращаемся к замене и решаем относительно :
Тогда получается, что и для любого неравенство выполняется.
ответ:
Решение задачи с параметром прикрепляю отдельным документом, так как мне не хватило ограничения на 5000 символов, к сожалению (
Объяснение:
Для того, чтобы вычислить площадь фигуры, ограниченной данными линиями, мы сперва должны построить их на графике
Теперь мы видим, что функцией y = 0, наша искомая фигура разбивается на две симметричные. Их площадь будет равна, то есть для того, чтобы вычислить площадь фигуры, нам достаточно найти площадь одной её половины и умножить на "2".
Получается, площадь равна удвоенному интегралу функции х^3 от 2 до 0.
2 * инт (х^3)dx = 2 * (x^4)/4.
Подставляем наши границы "2" и "0": 2 * (x^4)/4 = 2 * ((2^4)/4 - (0^4)/4) = 2 * 4 = 8.
ответ: S фигуры = 8.
x*t км,
по формуле: V=S/t, где V - скорость, S - путь, t - время,
следовательно S=V*t, по условию задачи это x*t
мотоциклисту потребовалось времени до встречи t мот= d/y,
где по условию задачи d - путь мотоциклиста до встречи, а у - скорость
смотри формулу V=S/t => t+S/V
Общее расстояние между пунктами M и N складывается из трех частей:
путь автомобиля до момента движения мотоциклиста, он нам известен x*t
путь мотоциклиста до встречи, по условию это d
путь автомобиля от момента движения мотоциклиста до встречи с ним, он нам не известен, но может быть вычислен по формуле s=V*T,
где V это скорость автомобиля, по условию - x
T - это время движения автомобиля до встречи, оно равно времени движения мотоциклиста. Мы его вычислили t мот=d/y,
т.о. неизвестный отрезок пути равен s=x*d/y
общее расстояние между пунктами равно
S(MN)=x*t+x*d/y+d