М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anara34
anara34
03.04.2020 01:28 •  Алгебра

При b≠0 решите уравнение b^2x^2 - 36 = 0=относительно х ответ. -6/b и 6/b

👇
Ответ:
b^2x^2-36=0\\b^2x^2=36\\x^2=\frac{36}{b^2}\\x=+-\sqrt{\frac{36}{b^2}}\\x=+-\frac{6}{b}}
4,5(44 оценок)
Открыть все ответы
Ответ:
саня9999999
саня9999999
03.04.2020
Найдите координаты вершины параболы:
а) f(x)=x²-6x+4;
б) f(x)=-x²-4x+1
в)f(x)=3x²-12x+2;

При вычислении воспользуйтесь формулами 
m=-b/2a и n=f(-b/2a),где m и n координаты вершины параболы f(x) =ax^2+bx+c

Решение:
а) f(x)=x²-6x+4;
В приведенном уравнение b =-6, a=1
m=x=-b/2a =-(-6)/(2*1)=6/2=3
n=y(3)=3²-6*3+4=9-18+4=-5
Вершина параболы y= x² - 6x + 4 находится в точке с координатами m=х=3, n=у(3)=-5

б) f(x)=-x²-4x+1
В приведенном уравнение b =-4, a=-1
m=x=-b/2a =-(-4)/(2*(-1))=-4/2=-2
n=y(-2)=-(-2)²-4*(-2)+1=-4+8+1= 5
Вершина параболы y= -x² - 4x + 1 находится в точке с координатами m=х=-2, n=у(-2)= 5

в)f(x)=3x²-12x+2

В приведенном уравнение b =-12, a=3
m=x=-b/2a =-(-12)/(2*3)=12/6= 2
n=y(2)=3*2²-12*2+2=12-24+2= -10
Вершина параболы y= 3x²-12x+2 находится в точке с координатами m=х=2, n=у(2)= -10
4,5(13 оценок)
Ответ:
lena101992
lena101992
03.04.2020

<!--c-->

Преобразим заданное уравнение:

x3+12x2−27x=a

С производной построим график функции y=x3+12x2−27x.

1. Введём обозначение f(x)=x3+12x2−27x.

Найдём область определения функции D(f)=(−∞;+∞).

2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:

f′(x)=(x3+12x2−27x)′=3x2+24x−27.

Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.

Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:

3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1

Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.

Если производная функции в критической (стационарной) точке:

1) меняет знак с отрицательного на положительный, то это точка минимума;

2) меняет знак с положительного на отрицательный, то это точка максимума;

3) не меняет знак, то в этой точке нет экстремума.

Итак, определим точки экстремума:

При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при  −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При  −9<x<1 имеем отрицательную производную, при

Объяснение:

4,4(66 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ