Область определения функции определится по условиям, что знаменатель не может быть нулем, а под корнем не должно быть отрицательное число.
а) 16x²-49<>0
(4x-7)(4x+7)<>0
4x<>7
x<>7/4
4x<>-7
x<>-7/4
x ∈ (-∞;-7/4)U(-7/4; 7/4)U(7/4; +∞)
y ∈ (-∞; +∞)
б) x²+4x+3>0
найдем корни
x²+4x+3 = 0
По теореме Виета
х1 = -3
х2 = -1
(x+3)(x+1)>0
x+3>0, x>-3
x+1>0, x>-1
x > -1
x+3<0, x<-3
x+1<0, x<-1
x < -3
x ∈ (-∞; -3]U[-1; +∞)
Поскольку подразумевается арифметический корень, то у ∈ [0; +∞)
Область определения функции определится по условиям, что знаменатель не может быть нулем, а под корнем не должно быть отрицательное число.
а) 16x²-49<>0
(4x-7)(4x+7)<>0
4x<>7
x<>7/4
4x<>-7
x<>-7/4
x ∈ (-∞;-7/4)U(-7/4; 7/4)U(7/4; +∞)
y ∈ (-∞; +∞)
б) x²+4x+3>0
найдем корни
x²+4x+3 = 0
По теореме Виета
х1 = -3
х2 = -1
(x+3)(x+1)>0
x+3>0, x>-3
x+1>0, x>-1
x > -1
x+3<0, x<-3
x+1<0, x<-1
x < -3
x ∈ (-∞; -3]U[-1; +∞)
Поскольку подразумевается арифметический корень, то у ∈ [0; +∞)
а) f'(x)=1*ln(x-5)+x/(x-5), в качестве точки x0 возьмём х0=6, тогда Δх=dx=0,003 и f(6,003)≈(ln(6-5)+6/1))*0,003=0,018. ответ: ≈0,018.
б) f'(x)=3*cos(3*x), x0=0, Δx=dx=0,001, f(0,001)≈3*cos(3*0)*0,001=3*0,001=0,003. ответ: ≈0,003.