x-4x^2 \ x - 1 > 0
1) x - 1 не равен 0 > x не равен 1
2) x - 4x^2 > 0
x*(1 - 4x) > 0
x > 0
1 - 4x > 0
- 4x > - 1
4x < 1
x < 0.25
>
0 0.25 1
ответ от нуля до 0.25 (указанные числа не входят)
x = π*n , n∈Z
x = -π/4 +π*k , k∈Z
Объяснение:
Используем формулу понижения степени :
sin^2(t) = (1-cos(2t) )/2
( (1-cos(2x) )/2)^2 + ( ( 1-cos(2x +π/2) )/2)^2 = 1/4
Умножаем на 4 обе части уравнения, учитывая, что
cos(2x +π/2) = -sin(2x)
(1-cos(2x) )^2 +(1+sin(2x) )^2 = 1
1 -2*cos(2x) +cos^2(2x) +1+2*sin(2x) +sin^2(2x) = 1
Поскольку : cos^2(2x)+sin^2(2x) = 1
-2*cos(2x)+2*sin(2x) = -2
cos(2x) -sin(2x) = 1
√2/2 *( cos(2x) -sin(2x) ) =√2/2
cos(2x+π/4) = √2/2
2x+π/4 = +-π/4 +2*π*n , n∈Z
x+π/8 = +-π/8 +π*n, n∈Z
x = π*n , n∈Z
x = -π/4 +π*k , k∈Z
1. Знаходимо координати точки О - середини відрізка ВD.
х=(х1 + х2)/2 = (-1-5)/2 = -6/2 = -3
у=(у1 +у2)/2 = (5+1)/2 = 6/2 = 3
О(-3;3)
2. Знаходимо координати точки С - кінця відрізка АС, знаючи координати іншого кінця А і середини О:
х1 = 2х - х2 = 2·(-3) +4 = -2
у1 = 2у - у2 = 2·3 -4 = 2
С(-2;2)
Відповідь. (-2;2)