Возьмем одну сторону за х, а другую за у. Переведем все известное в уравнения: S= x·y, P= 2(x+y) Напишем два уравнения: 24= х·у 20= 2х+2у Поделим второе уравнение на 2, получим: 10= х+у У нас есть условие: при умножении корни должны давать 24, следовательно стороны равны 4 и 6
0 " class="latex-formula" id="TexFormula4" src="https://tex.z-dn.net/?f=f%27%28x%29%3E0%20" title="f'(x)>0 "> при x∈(-≈;)U(;+≈) Следовательно, функция возрастает на промежутке от минус бесконечности до достигая в этой точке локального максимума, затем убывает до локального минимума в точке , затем снова возрастает. => Следовательно функция является выпуклой на интервале от минус бесконечности до 0, и вогнутой, соответственно, от 0 до плюс бесконечности График выглядит, примерно, так.Посчитай пять точек для подгонки к координатам: x∈{-2;-1;0;1;2}
2) дальше, мы имеем, что x+y=17 подставим во второе уравнение:
xy-9*17+81=2 xy-153+81=2 xy=74
3)дальше, берем в систему x+y=17 и xy=74
потом, по методу подставление, находим из первого или второго уравнения переменную и подставляем во второе уравнениея из первого уравнения нашел x, x=17-y, и подставил во второе:
(17-y)y=74 17y-y^2=74 соберем все в одну сторону
y^2-17y+74=0
находим дискриминант: Д=17^2-4*74=-7
дискриминант отрицателен, значит нет решения. ответ пустое множество.
S= x·y, P= 2(x+y)
Напишем два уравнения:
24= х·у
20= 2х+2у
Поделим второе уравнение на 2, получим: 10= х+у
У нас есть условие: при умножении корни должны давать 24, следовательно стороны равны 4 и 6