Пусть моркови было х кг.
Тогда картофеля было 2,5х кг, а лука 2,5х+14 кг.
Всего овощей на базе было х+2,5х+2,5х+14 кг, что по условию задачи равно 590 кг.
х+2,5х+2,5х+14=590
6х=590-14
х= 576:6
х=96 (кг)- морковь
2,5*96=240 (кг) - картофель
2,5*96+14 =254 (кг) лук
А вторая задача правильно задана, в смысле все условия вышеперечислены?
Пусть скорость катера х км/ч, тогда по расстояние из А в В было 8*(х+2) км - 8 это время, 2 это скорость течения реки, ну а формулу расстояния знают все :время *на скорость
А расстояние Из В в А составляет 9*(х-2) - минус Т.К. против течения. Так как расстояния туда и обратно равны составляем уравнение
9*(х-2) = 8*(х+2)
9х-18 =8х+16
9х-8х=18+16
1х=34 Км/ч - скорость катера
1) графический метод - см. вложение
прямые пересекаются в точке с координатами (3;2), значит х = 3 y = 2
2) метод подстановки
-x+2y=4,
7x-3y=5;
х = 2y - 4,
7(2y - 4) - 3y = 5;
14y - 28 - 3y = 5
11y = 33
y = 3
x = 2*3 - 4 = 2
y = 3, x = 2
3) метод алгебраического сложения
3x-2y=64
3x+7y=-8
вычтем из 1ого уравнение 2ое :
(3x - 2y) - (3x +7y) = 64 - (-8)
-9y = 72
y = -8
Подставим полученное значение y в любое из 2х уравнений системы:
3х -2*(-8) = 64
3х = 48
х = 16
т.е. х = 16 y = -8
4) точка пересечения y=-7/8x + 17 и y = -3/5х-16:
-7/8x + 17 = -3/5х-16
7/8х - 3/5х = 33
11x/40 = 33
x = 120
y = (-7/8)*120 + 17 = -88
график уравнения y+px=0 пройдет через точку пересечения прямях (120;-88)
-88 +120p = 0
p = 88/120 = 11/15
a≥4
2.2x+5x ≤ 4-1
7x ≤ 3
x≤3÷7
(знаки равенства пиши без черточек)