X-было всего 0,6х-отгрузили 1 раз х-0,6=0,4х-осталось 0,4х*5/6=1/3*х-отгрузили 2 раз 2/5х-1/3х=6/15х-5/15х=1/15х-осталосб х-100% 1/15х-? 1/15х*100:х=6 2/3% осталось
6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
Х - скорость первого велосипедиста (х - 5) - скорость второго велосипедиста 176/х - время, в течение которого первый велосипедист весь маршрут 176/ (х - 5) - время, в течение которого второй велосипедист весь маршрут Уравнение !76 / (х - 5) - 176 /х = 5 При х ≠ 5 приведём к общему знаменателю 176 * х - 176 * х + 176 * 5 = 5 * (х² - 5х) 5х² - 25х - 176 * 5 = 0 х² - 5х - 176 = 0 D = 25 - 4 * 1 * (- 176) = 25 + 704 = 729 D = √729 = 27 х₁ = (5 + 27) / 2 = 16 км/ч - искомая скорость первого велосипедиста х₂ = (5 - 27) / 2 = - 11 - отрицательное значение не удовлетворяет условию ответ: 16 км/ч
0,6х-отгрузили 1 раз
х-0,6=0,4х-осталось
0,4х*5/6=1/3*х-отгрузили 2 раз
2/5х-1/3х=6/15х-5/15х=1/15х-осталосб
х-100%
1/15х-?
1/15х*100:х=6 2/3% осталось