Відповідь: a) (-1; -4) b) x=-1 с) ОХ: (-1+√2; 0) и (-1-√2; 0) OY: (0; -2) e) в I, II, III и IV четвертях
Пояснення:
a) x=-b/2a x=-4/4=-1 y=-4
b) ось симметрии параболы - прямая, проходящая через её вершину (-1;-4) и параллельная оси Оу, поэтому абцисса ( х ) в любой точке на этой прямой одинакова и равна -1 => х = -1
c) при пересечении с осью ОХ ордината y=0 => 2x^2+4x-2=0
x1=-1+√2 x2=-1-√2
при пересечении с осью OY абсцисса х=0 y=-2
e) ветви параболы направлены вверх т.к. коэффициент а больше 0 а=2.Расположена она во всех 4-ёх четвертях
ответ: 3) ВС1=6 4) С=НВА=30 А=СВН=60
Объяснение: 3)Угол АВС=180-(60+80)=40 СС1-биссектриса АСВ, значит угол ВСС1=ВСА/2=80/2=40 ВСС1=СВС1, т.е. треуг. ВСС1 равнобедрен. с основанием ВС, т.е. ВС1=СС1=6
4) по т.синусов Стороны треугольника пропорциональны синусам противолежащих углов. 16/sinB=8/sinC=8√3/sinA
AC^2=AB^2+BC^2 (т.Пифагора) BC^2=16^2-8^2=192 BC=8√3
угол В=90, а sin90=1 16/1=8√3/sinA sinA =8√3/16=√3/2 угол А=60, значит угол С=180-(90+60)=30
Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному. угол С=НВА=30 А=СВН=60
21x + 2y = 113 /*4
7x - 8y = 3
84x + 8y = 452
+
84x + 7x = 3 + 452
91x = 455
x = 5
y = (113 - 21*x)/2 = (113 - 105)/2 = 4
ответ
(5; 4)