Решение Пусть х км/ч - скорость второго пешехода. Тогда скорость первого - (х+1) км/ч. Так как встретились пешеходы в 9 км от пункта А, путь первого составил 9 км, а путь второго - 10 км. Значит, второй пешеход провел в пути (10/х) часов, а первый (9/(х+1)+0,5) часов, полчаса из которых потратил на остановку. Составим равнение: 10/x = 9/(x + 1) + 1/2 10/x = (18 + x + 1)/([2*(x + 1)] 20x + 20 = 18x + x² + x x² – x – 20 = 0 x₁ = - 4 не удовлетворяет условию задачи x₂ = 5 5 (км/ч) - скорость второго пешехода 1) 5 + 1 = 6 (км/ч) - скорость первого пешехода ответ: 6 км/ч ; 5 км/ч.
Второе число - (х- 1 2/3)
Третье число - (х+ 2 2/10)
Сумма =15
Уравнение:
х+(х- 1 2/3) + (х+ 2 2/10)=15
х+х+х=15+1 2/3 - 2 2/10
3х= 15+ 1 20/30 - 2 6/30
3х= 14 14/30 = 14 7/15
х= 14 7/15 :3 = 217/15 × 1/3
х=217/45
х= 4 37/45 - первое число
4 37/45 - 1 2/3 = 3 7/45 - второе число
4 37/45 + 2 2/10 = 7 2/90= 7 1/45 - третье число
Проверим уравнение:
4 37/45 + (4 37/45 - 1 2/3)+( 4 37/45+ 2 2/10)=15
4 37/45 + ( 4 37/45 - 1 30/45) +(4 74/90 + 2 18/90)=15
4 37/45 + 3 7/45 + 7 2/90 =15
(4+3+7) + ((37+7+1)/45) =15
14 + 45/45=15
15=15
ответ: 4 37/45 - первое число ; 3 7/45 - второе число;
7 1/45 - третье число.