М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
katyapugachewa
katyapugachewa
16.11.2020 17:01 •  Алгебра

Решить со степенями пример (-3а 5 х 3 )2 *х2

👇
Ответ:
НастяMAY
НастяMAY
16.11.2020
На сколько я понял(не очень понятно на счёт "-3a 5", я взял, что это в 5 степени): (-9*a^5)^2 * 2 = 81*a^10*2=162*a^10.
4,6(55 оценок)
Открыть все ответы
Ответ:

Покажу один из сопособов решения таких неравенств

\displaystyle \frac{2^{2x}-2^2*2+30}{2^2-2}+\frac{2^{2x}-7*2^x+3}{2^x-7}\leq 2*2^x-14

1) проверим ограничения

\displaystyle \left \{ {{2^x\neq 2} \atop {2^x\neq 7}} \right. ; \left \{ {{x\neq 1} \atop {x\neq log_27}} \right.

2) введем замену \displaystyle 2^x=t

получаем,

\displaystyle \frac{t^2-16t+30}{t-2}+\frac{t^2-7t+3}{t-7}\leq 2t-14

А далее самое интересное

будем делить многочлен на многочлен

_t²-16t+30 |  t-2                    и         _t²-7t+3 | t-7                

  t²-2t          ______                           t²-7t      _____

_____             t-14                               ____       t

    _ -14t+30                                                 3 (остаток)

       -14t+28

     ------------

                2 (остаток)

тогда

\displaystyle \frac{(t-14)(t-2)+2}{t-2}+\frac{t(t-7)+3}{t-7}\leq 2t-14\\\\\\

\displaystyle t-14 +\frac{2}{t-2}+t+\frac{3}{t-7}\leq 2t-14\\\\\frac{2}{t-2}+\frac{3}{t-7}\leq 0

теперь все совсем просто

\displaystyle \frac{2t-14+3t-6}{(t-2)(t-7)}\leq 0\\\\\frac{5(t-4)}{(t-2)(t-7)}\leq 0

решаем методом интервалов

__-____ 2 ___+____4___-____7___+____

\displaystyle t

Не забываем проверить ограничение

ответ (-∞; 1)∪[2; log₂7)

4,5(35 оценок)
Ответ:
даша3335
даша3335
16.11.2020

fнаиб =  4;     f наим = 0

Объяснение:

28б

f(x) = x³ - 6x² + 9x  при х ∈ [0; 3]

Значения функции на концах интервала

f(0) = 0

f(3) = 27 - 54 + 27 = 0

Производная функции

f'(x) = 3x² - 12x + 9

Точки экстремумов

3x² - 12x + 9 = 0

х² - 4х + 3 = 0

D = 16 - 12 = 4 = 2²

x₁ = 0.5(4 - 2) = 1

x₂ = 0.5 (4 + 2) = 3

В точке х₁ = 1  находится локальный максимум

f(1) = 1 - 6 + 9 = 4 - максимальное значение

В точке х₂ = 3 находится локальный минимум

f(3)  = 0

Сравнивая со значениями функции на границах интервала, делаем вывод. что наибольшее значение функции на заданном интервале равно 4. наименьшее равно 0.

4,7(77 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ