М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
MrSwister
MrSwister
07.10.2022 17:17 •  Алгебра

Корень из 3*cos2x-7sinx-3*корень из3=0 а)решите уравнение б)найдите его корни,принадлежащие отрезку [2п; 7п/2]

👇
Ответ:
Sladkayaaaaaa
Sladkayaaaaaa
07.10.2022
Разложим косинус двойного угла
cos 2x = 1 - 2sin^2 x
3 - 6sin^2 x - 7sin x - 3√3 = 0
Меняем знаки
6sin^2 x + 7sin x - 3 + 3√3 = 0
Обыкновенное квадратное уравнение относительно sin x
D = 7^2 - 4*6(-3+3√3) = 49+72-72√3 = 121-72√3 ~ -3,7 < 0
Решений нет
4,5(33 оценок)
Открыть все ответы
Ответ:
123443210968687
123443210968687
07.10.2022
y(x)=sin4x*cos3x-cos4x*sin3x=sin(4x-3x)=sin(x)

наименьшим положительным периодом функции y(x)=sin(x) есть 2\pi
----------------------------------
наименьший положительный период ctg(x) равен \pi
тогда у нас
y(x)=y(x+\pi)
пусть T - искомый период, тогда

3ctg(\frac{x}{3})+8=3ctg(\frac{x+T}{3})+8=3ctg(\frac{x}{3}+\frac{T}{3})+8=3ctg(\frac{x}{3}+\pi)+8

имеем, что \frac{T}{3}=\pi

окончательно T=3\pi

3 перед котангенсом вытягивает график в три раза вдоль оси ОУ по отношению к графику просто котангенса не влияя на период
8-ка - сдвигает график 3ctg(\frac{x}{3}) относительно оси OX на 8 единиц вверх, также не влияя на период
----------------------------------

проанализируем какова область определения функции:
1-cos(5x) \neq 0

cos(5x) \neq1

5x \neq 2\pi n, n\in Z

x \neq \frac{2\pi n}{5}, n\in Z

Как видим, запрещенные значения x - это симметричное относительно начала координат множество точек,
что означает, что и область определения функции y(x) также симметрична относительно начала координат. Это означает, что есть смысл проверять функцию на парность, дальше.

y(-x)=\frac{3sin(2*(-x))}{1-cos(5*(-x))}=\frac{3sin(-2x)}{1-cos(-5x)}=\frac{-3sin(2x)}{1-cos(5x)}=-\frac{3sin(2x)}{1-cos(5x)}=-y(x)

Функция оказалась непарной
4,7(45 оценок)
Ответ:
1)На графике у тебя парабола нарисована. Чертишь прямую у = -1 и рассматриваешь ту часть графика, которая оказывается над этой прямой. Вот вся та часть и есть решение. Запиши интервал для х, который соответствует той части графика и это будет ответ.
ДА. Так как знак больше иои РАВНО, то концы интервала будут включены. (квадратные скобочки)
2)
3)Два неравенства называются равносильными, если множества их решений совпадают (в том числе, неравенства, не имеющие решений, считаются равносильными)
4)-
5)Если дискриминант меньше нуля, значит график функции не пересекает ось ОХ! ! В данном случае, парабола будет направлена ветками вверх, следовательно в этом неравенство нет решения.
Если бы 3x^2 - 8x + 14 > 0, то решением было бы x Є R, а здесь решения нет!!
( Рациональное неравенство – это неравенство с переменными, обе части которого есть рациональные выражения)
7)

Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x)<s(x) (знак неравенства, естественно, может быть иным ≤, >, ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.

Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражениеr(x)−s(x), образовавшееся в левой части, тоже целое, а известно, что можно любоецелое выражение преобразовать в многочлен. Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) иh(x) имеют одинаковую область допустимых значений переменной x), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).

В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.

4,6(59 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ