«Расстояние между городами 564 км. Навстречу друг другу из городов одновременно вышли поезда и встретились через 6 часов. Скорость одного поезда на 10 км больше скорости другого. Чему равна скорость каждого поезда?»
Решение: Пусть х км/ч - скорость первого поезда, а у км /ч – скорость второго поезда. По условию задачи поезда встретились через 6 часов. Тогда, 6х км - пройдёт до встречи первый поезд, 6у км - пройдёт до встречи второй поезд. Их встреча означает, что суммарно они до встречи путь в 564 км, то есть 6х+6у=564 – первое уравнение.
Скорость первого поезда на 10 км/ч больше скорости второго, то есть, разность между скоростями равняется 10. Получим второе уравнение: х-у=10
В итоге получим систему уравнений:
ответ: 52 км/ч, 42 км/ч.
{х+у=140 ; {x=140-y
{0,05х+0,4у=42; {0,05*(140-y)+0,4y=42
7-0,05y+0,4y=42; 0,35y=42; y=4200/35; y=600:5; y=120
x=140-120; x=20
20т-стали 1-ого и 120т- второго сорта
ответ. 20т; 120т