Работаем по формуле А=Р*t А - работа Р - производительность t - время
1)Примем всю работу на единицу. Так как оба работника выполняют эту работу за 35 дней, то можно найти их производительность: Р=1/35 2) так как 7 дней они работали вместе (с производительностью 1/35), то можно найти, какую часть работы они выполнили: А(1)=7*(1/35)=1/5 3) найдем, какую часть работы им осталось выполнить: А(2)=1-А(1)=1-(1/5)=4/5 4) так как второй работник выполнил оставшуюся часть работы(А2) за 40 дней, найдем его производительность: Р=А(2)/t=(4/5):40=1/50 5) Теперь нам известна производительность второго работника. Мы можем узнать, за какое время он мог бы выполнить всю работу, работая один: t=A/P t=1/(1/50)=50 ответ: за 50 дней
s s |*| Обозначим весь путь 2s, х км в час скорость Семена, у км в час - скорость машины. Тогда на путь от дома до школы Семен тратит t часов, которые равны сумме времени, затраченного на путь на машине и пешком.
(s/x)+(s/y)=t
Если Семён пойдет пешком всю дорогу, то опоздает на пол часа. Т. е на путь 2s cо скоростью х км в час, затратит время t+(30/60).
2s/x=t+(30/60)⇒ s/x=(t/2)+(1/4)
Тогда время, затраченное на проезд половины пути на машине: (s/y)=t-(s/v)=t-(t/2)-(1/4)=(t/2)-(1/4).
Находим время, затраченное на проезд (2/3) пути на машине, т.е. (2/3) от 2s делим на скорость у км в час:
(4s/3y)=(4/3)·(t/2)-(4/3)·(1/4)= (2t/3)-(1/3)
Находим время затраченное на прохождение (1/3) пути пешком машине, т.е. (1/3) от 2s делим на скорость х км в час.
y(1)=1+3+4=8
y'=3x²+3≠0
наименьшее 0