Квадратный трёхчлен типа ах² + вх + с нельзя разложить на множители, если уравнение ах² + вх + с = 0 не имеет решений.
Проверим, имеют ли решения заданные трёхчлены, находя дискриминант D
1) x²+3x-1
решаем уравнение x²+3x-1 = 0
D = 9 + 4 = 13 (два решения)
2) x²+3x+1
решаем уравнение x²+3x+1 = 0
D = 9 - 4 = 5 (два решения)
3) x²+3x+7
решаем уравнение x²+3x+7 = 0
D = 9 - 28 = -19 (нет решения)
4) x²+6x-13
решаем уравнение x²+6x-13 = 0
D = 36 +52 = 88 (два решения)
ответ: квадратный трёхчлен 3) x²+3x+7 нельзя разложить на линейные множители
d=b^2-4ac
d=2^2-4*1*(-3) = 4+12=16, корень из d = корень из 16 = 4
x1,2 = -b+-корень из d / 2a
x1 = -2+4 / 2 = 2/2=1
x2 = -2-4 / 2 = -6/2=-3