Объяснение:
2. а14 равен 2,9,
а10 равен 0,5. Найдите первый член и разность этой арифметической прогрессии.
Решение. По формуле an=(n-1)в, находим:
а14=а1+13d;
а10=а1+9d;
2,9=а1+13d; [*(-1)]
0.5 =a1+9d;
-2.9=-a1-13d;
0.5=a1+9d;
Складываем:
-2,9+0,5=-13d+9d
-2.4=-4d;
d= 0.6;
Найдем a1:
0.5=a1+9*0.6;
0.5=a1+5.4;
a1=5.4-0.5=4.9.
a1=4.9.
***
3) Найдите сумму первых двадцати девяти членов арифметической прогрессии -3,5; -3,7;...
Решение.
а1=-3,5; а2= -3,7; ... d=-3.7 - (-3.5)= -3.7 + 3.5= - 0.2;
а29=-3.5 + (29-1) *(-0.2) = -3.5 +28*(-0.2)=-3.5 - 5.6 = - 9.1;
Сумма первых n членов арифметической прогресс равна
Sn= n*(a1+an) / 2.
S=29 * (a1+a29)/2 = 29*(-3.5 -9.1)/2 = 29* (-12.6)/2= - 365.4 / 2 = -182.7
S29= -182,7.
***
4) Сколько первых членов арифметической прогрессии
–12; -10; -8; ...
нужно сложить, чтобы получить -36?
Решение.
Sn=-36; a1=-12; d=-8 - (-10)=-8+10 = 2;
d=2;
an=a1+(n-1)d= -12+(n-1)*2= -12+2n-2= -14+2n;
Sn=n*(a1+an)/2;
-36=n*(-12-14+2n)/2;
-36=n*(-26+2n)/2;
-36=n*(-13+n);
-36=-13n+n²;
n²-13n +36=0;
По теореме Виета
n1+n2=13; n1*n2=36;
n1=9; n2=4;
a9=-12+8*2=-12+16=4;
a4=-12+3*2=-12 +6= -6;
S9=9*(-12+4)/2=9*(-8)/2=-72/2=-36;
S4=4*(-12+(-6))/2 = 4*(-18)/2 = -72/2=-36.
ответ: 9 или 4.
3. Найдите сумму первых двадцати девяти членов арифме-
тической прогрессии -3,5; -3,7;
4. Сколько первых членов арифметической прогрессии –12;
-10; -8; ... нужно сложить, чтобы получить -36?
ответ: 7.11. в ящику знаходиться 12 деталей, виготовлених заводом №1, 20 деталей – заводом №2 і 18 – заводом №3. ймовірність того, що деталь, виготовлена заводом №1, відмінної якості, дорівнює 0,9; для деталей, виготовлених на заводах №2 і №3, ці ймовірності відповідно дорівнюють 0,6 і 0,9. знайти ймовірність того, що взята навмання деталь виявиться відмінної якості.
7.12. в першій урні знаходиться 10 куль, 8 із яких білі; в другій урні 20 куль, із них 4 білі. із кожної урни навмання беруть по одній кулі, а потім із цих двох куль навмання беруть одну. знайти ймовірність того, що витягли білу кулю.
7.13. у кожній із трьох урн знаходиться 6 чорних і 4 білих кулі. із першої урни навмання витягли одну кулю і переклали її в другу урну, після цього із другої урни навмання витягли одну кулю і переклали в третю урну. знайти ймовірність того, що куля, навмання взята із третьої урни, буде білою.
в городе екатеринбург он ожил на своих похоронах
люди попадали в обмороки, когда он
7.14. ймовірність того, що під час роботи цифрової електронної машини відбудеться збій в арифметичному пристрої, в оперативній пам’яті, в інших пристроях, співвідносяться як 3: 2: 5. ймовірність того, що збій буде знайдено в арифметичному пристрої, в оперативній пам’яті, в інших пристроях відповідно дорівнює 0,8: 0,9: 0,9. знайти ймовірність того, що збій в машині буде знайдено.
7.15. продукція виготовляється на двох підприємствах і надходить на спільну базу. ймовірність виготовлення бракованої продукції для першого підприємства дорівнює 0,1, для другого – 0,2. перше підприємство здало на склад 100 одиниць продукції, друге – 400. знайти ймовірність того, що навмання взята зі складу одиниця продукції буде не бракованою.
7.16. на склад підприємства надходять деталі із трьох цехів. перший цех відправив 100 деталей, другий і третій – по 200. перший і другий цехи по 2% браку, третій – 1%. знайти ймовірність того, що навмання взята деталь бракована.
7.17. два верстати виготовляють деталі, які поступають на конвеєр. з першого верстата надійшло 400 деталей, а з другого на 50% більше. перший верстат дає 2% браку, другий – 3%. знайти ймовірність того, що навмання взята деталь з конвеєра бракована.
7.18. у першому ящику є 20 деталей, з яких 30% пофарбовано, у другому 10 деталей і 4% пофарбовано. знайти ймовірність того, що деталь, взята з навмання вибраного ящика, пофарбована.
7.19. в урні 4 білі і 4 чорні кульки. два гравці почергово виймають із урни по кульці, не повертаючи їх назад. виграє той гравець, котрий раніше витягне білу кульку. знайти ймовірність того, що: а) виграє перший гравець; б) виграє другий гравець.
7.20. маємо три урни. у першій міститься 6 білих і 4 чорних кульки, у другій – 8 білих і 2 чорних і в третій – 1 біла і 1 чорна. із першої урни навмання беруть три кульки, а із другої – дві і у третю урну. яка ймовірність після цього вийняти із третьої урни білу кульку?
7.21. серед n екзаменаційних білетів є п „щасливих”. студенти підходять за білетами один за одним. у кого більша ймовірність узяти „щасливий” білет: у того, хто підійшов першим, чи у того, хто підійшов другим?
8. формула байєса
якщо випробування проведено і в результаті нього подія а з’явилася, то умовна ймовірність рa(вk) може не дорівнювати р(вk). порівняння цих ймовірностей дозволяє переоцінити ймовірність гіпотези за умови, що подія а з’явилася. для цього використовують формулу байєса:
, k=1,2,…,n.
розв’язок типових
приклад 8.1. два автомати виготовляють однакові деталі, які надходять на спільний конвеєр. продуктивність першого автомата вдвічі більша за продуктивність другого. перший автомат випускає в середньому 60% деталей без браку, а другий – 84%. навмання взята з конвеєра деталь виявилась без браку. знайти ймовірність того, що ця деталь виготовлена першим автоматом.
розв’язання. позначимо через а подію – деталь без браку. можна сформулювати дві гіпотези: в1 – деталь виготовлена першим автоматом (оскільки перший автомат виготовляє вдвічі більше деталей, ніж другий): р(в1)=; в2 – деталь виготовлена другим автоматом, причому р(в2)=. умовна ймовірність того, що деталь буде без браку, якщо вона зроблена першим автоматом, дорівнює . умовна ймовірність того, що деталь буде без браку, якщо вона зроблена другим автоматом, дорівнює . ймовірність того, що навмання взята деталь виявиться без браку, за формулою повної ймовірності дорівнює: