Если числа натуральные, то каждое следующее число больше предыдущего числа на единицу))) например: 2; 3; 4; 5;... в общем виде это можно записать так: n; (n+1); (n+2); (n+3);... 1) сумму трех последовательных натуральных чисел, меньшее из которых равно n: n + n+1 + n+2
четное число: 2n последовательные чётные натуральные числа: 2n; 2(n+1); 2(n+2); 2(n+3);... например: 8; 10; 12; 14;... (здесь n=4) например: 4; 6; 8;... (здесь n=2) 2) произведение трех последовательных чётных натуральных чисел, большее из которых равно 2k: 2(k-2) * 2(k-1) * 2k
1. 1)Преобразует левую часть уравнения так, чтобы получился квадрат выражения с х. х^2-4х+3=0, (х^2-2*(2*х)+4)-4+3=0, (х-2)^2-1=0, (х-2)^2=1, х-2=1 или х-2=-1, х=3 или х=1. 2) представим левую часть в виде произведения: х^2+9х=0, х(х+9)=0, х=0 или х=-9. 2. Подставим в уравнение известный корень и найдем а: 4^2+4-а=0, 16+4-а=0, а=20. Разложим левую часть на множители, зная что один из них (х-4): х^2+х-20=х2-4х+4х+х-20=х(х-4)+5х-20=х(х-4)+5(х-4)=(х-4)(х+5), то есть (х-4)(х+5)=0, второй корень х=-5. ответ: а=20, второй корень (-5). Во втором задании можно просто подставить а и решить уравнение, найдя 2 корня.