Спортивная лодка км против течения реки и такое же ростояние по течению , затратив на весь путь 14 часов . определите собственную скорость лодки , если скорость течения реки 2 км/ч
Пусть х - собственная скорость лодки,тогда (х+2) км/ч по течению реки, а (х-2) км/ч против Известно, что всего путь занял 14 часов Составим уравнение: 45/(х+2)+45/(х-2)=14 45х-90+45х+90=(14х-28)(14х+28) 90х=14х^2-56 14x^2-90x-56=0 7х^2-45х-28=0 D=2025-4*7*(-28)=2809=53 х=45+53/14=7 км/ч собственная скорость лодки ответ: 7 км/ч
Для приведенного квадратного уравнения (т.е. такого, коэффициент при x² в котором равенединице) x² + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, апроизведение корней равно свободному члену q:
В случае неприведенного квадратного уравнения ax² + bx + c = 0:
x1 + x2 = -b / a x1 · x2 = c / aТеорема Виета хороша тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 · x2. Так, еще не зная, как вычислить корни уравнения x² – x – 1 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна 1, апроизведение должно равняться –1.Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x² – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: 6 = 2 · 3, 2 + 3 = 5. Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями.
Известно, что всего путь занял 14 часов
Составим уравнение:
45/(х+2)+45/(х-2)=14
45х-90+45х+90=(14х-28)(14х+28)
90х=14х^2-56
14x^2-90x-56=0
7х^2-45х-28=0
D=2025-4*7*(-28)=2809=53
х=45+53/14=7 км/ч собственная скорость лодки
ответ: 7 км/ч