Попробую объяснить порядок решения задачи. Пусть одна труба запонит бассейн за Х часов, тогда вторая труба заполнит его за Х+6 часов. Известно что вместе две трубы заполнили его за 2 часа половину бассейна, значит за 2*2=4 часа они заполнят весь бассейн. Можно записать: 1/Х+1/(Х+6)=1/4. Левую часть приведём к общему знаменателю, получим (2Х+6)/(Х²+6)=1/4 или 8Х+24=Х²+6Х. Решаем квадратное уравнение: Х²-2Х-24=0; дискриминант D=4-4*(-24)=100, находим корни Х₁=(2-10)/2=-4 (нам не подходит, так как время не может быть отрицательным), Х₂=(2+10)/2=6 часов потребуется первой трубе наполнить бассейн. А второй трубе потребуется 6+6=12 часов чтобы наполнить бассейн.
Сперва нужно решить это выражение,а потом,в конечный ответ подставить соответствующие числа.начинаем: 3х²-(7ху-4х²)+(5ху-7х²)3х²-(7ху-4х²)+(5ху-7х²)=3х²-7ху+4х²+15х³-21х⁴-7ху+4х²+5ху-7х²=3х²+4х²+4х²-7х²-7ху-7ху+5ху+15х³-21х⁴=11х²-16ху+15х³-21х⁴(теперь нужно их записать с возрастанием степеней)т.е. от самой большой к самой маленькой: -21х⁴+15х³+11х²-16ху как раз теперь будем подставлять значения в числа: х=0,3 у=-10 -21*(0,3)⁴+15*(0,3)³+11*(0,3)²-16*(0,3)*(-10) теперь только осталось подсчитать на калькуляторе и все,обращяя внимание на степень)) если не трудно,то назовите ответ как лучший-ведь действительно было потрачено немало
d=a2-a1
a91=a1+90*d=a1+90(a2-a1)