Арифметический квадратный корень из некоторого числа - это неотрицательное число, квадрат которого равен некоторому числу.
Обозначается: √а. Т.е. √а = b, причем b ≥ 0 и b² = a.
Например, √4 = 2, т.к. 2² = 2 и 2 ≥ 0.
Тогда:
√а = 3, значит, а = 9, т.к. 3² = 9;
√а = 10, значит, а = 100, т.к. 10² = 100;
√а = 0, значит, а = 0, т.к. 0² = 0;
√а = 0,8, значит, а = 0,64, т.к. 0,8² = 0,64;
√а = 1/4, значит, а = 1/16, т.к. (1/4)² = 1/16;
√а = 0,1, значит, а = 0,01, т.к. 0,1² = 0,01;
√а = 1 целая 2/3 = 5/3, значит, а = 25/9 = 2 целых 7/9, т.к. (5/3)² = 25/9;
√а = 1,1, значит, а = 1,21, т.к. 1,1² = 1,21.
По теореме Виета для уравнения вида:
х² + px + c = 0
Можно подобрать такие корни, что:
x1*x2 = c
x1+x2 = –p
Я обычно подбираю числа, дающие при умножении в уравнении число 'с', с таблицы умножения, а потом расставляю знаки так, чтобы получить '–р' (число возле 'х' с противоположным знаком). Таким образом, уравнения по т. Виета решаются устно (методом подбора).
а) х² + 11х + 28 = 0
х1 = -7; х2 = -4 (по т. Виета)
Действительно:
х1*х2 = -7*(-4) = -28 (это 'с)
х1+х2 = -7+(-4) = -11 (это '-р')
ответ: -7; -4
б) х² - 12х + 27 = 0
х1 = 3; х2 = 9 (по т. Виета)
Действительно:
х1*х2 = 3*9 = 27 (это 'с')
х1+х2 = 3+9 = 12 (это '-р')
ответ: 3; 9
в) х² + 37х + 36 = 0
х1 = -36; х2 = -1 (по т. Виета)
Действительно:
х1*х2 = -36*(-1) = 36 (это 'с')
х1+х2 = -36-1 = -17 (это '-р')
ответ: -36; -1
г) х² - 16х - 36 = 0
х1 = -2; х2 = 18 (по т. Виета)
Действительно:
х1*х2 = -2*18 = -36 (это 'с')
х1+х2 = -2+18 = 16 (это '-р')
ответ: -2; 18
-2=к+б
-10=-3к+б
из первого уравнения отнимем второе
-2+10=к+б+3к-б
8=4к
к=8/4=2
подставим значение к в 1-е уравнение
-2=к+б
-2=2+б
б=-2-2=-4
подставим к и б в уравнение прямой
у=2х-4