Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая труба. сколько литров в минуту пропускает первая труба, если резервуар объёмом 330 литров она заполняет на 2 минуты дольше, чем вторая труба заполняет резервуар объёмом 400 литров?
Для приведенного квадратного уравнения (т.е. такого, коэффициент при x² в котором равенединице) x² + px + q = 0 сумма корней равна коэффициенту p, взятому с обратным знаком, апроизведение корней равно свободному члену q:
В случае неприведенного квадратного уравнения ax² + bx + c = 0:
x1 + x2 = -b / a x1 · x2 = c / aТеорема Виета хороша тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 · x2. Так, еще не зная, как вычислить корни уравнения x² – x – 1 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна 1, апроизведение должно равняться –1.Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x² – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: 6 = 2 · 3, 2 + 3 = 5. Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями.
2-я - х+5 л/мин.,
отсюда уравнение примет вид:
400/(х+5) + 140 = 900/х
400х + 140х(х+5) = 900(х+5)
140х2 + 200х - 4500 = 0
7х2 + 10х -225 = 0
х = 5, 2-я труба пропускает 5+5=10 л/мин.