М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
indira227
indira227
28.08.2020 18:15 •  Алгебра

Найдите значение выражения, 1 целая 5/6-0,5*(-10/3)

👇
Ответ:
См. в приложении.
----------------------------
Найдите значение выражения, 1 целая 5/6-0,5*(-10/3)
4,7(13 оценок)
Открыть все ответы
Ответ:
Sabinafei
Sabinafei
28.08.2020
Пусть самый маленький катет равен x, тогда больший катет x+89, а гипотенуза = x+98. Из этого следует:
x² + (x+89)² = (x+98)²
x² + x² + 178x + 7921 = x²+196x+9604
x² - 18x - 1683 = 0
D = 324 + 6732 = 7056 (84)
x1 = (18 + 84) / 2 = 51 (длина меньшего катета x)
x2 = (18 - 84) / 2 = - 33 (не подходит, т.к. длина не может быть отрицательной)

Т.к. x = 51, то
51+89 = 140 (больший катет)
51 + 98 = 149 (гипотенуза)
ответ: 51, 140, 149.

Вероятно, есть более простой вариант решения с не такими большими числами, но я уже не помню его :D
4,4(57 оценок)
Ответ:
alinaharitonovi
alinaharitonovi
28.08.2020
\frac{1}{(x-2)(x-3)} + \frac{1}{(x-2)(x-4)} + \frac{1}{ x^{2}-7x+12} \leq 1

\frac{1}{(x-2)(x-3)} + \frac{1}{(x-2)(x-4)} + \frac{1}{ (x-3)(x-4)} \leq 1

\frac{x-4}{(x-2)(x-3)(x-4)} + \frac{x-3}{(x-2)(x-4)(x-3)} + \frac{x-2}{ (x-3)(x-4)(x-2)} \leq

\frac{3(x-3)}{(x-2)(x-3)(x-4)}\leq 1

\frac{3}{(x-2)(x-4)}\leq 1

\frac{3}{(x-2)(x-4)}\leq 1

ОДЗ
x≠2
x≠4

x>2
x>4
3≤(x-2)(x-4)
3≤ x²-6x+8
x²-6x+5≥0
(x-5)(x-1)≥0
x-5≥0⇒x≥5
x-1≥0 ⇒x≥1   ⇒x≥5  
x-5≤0
x-1≤0 ⇒
⇒x≤1
не подходит так как начальные условия x>2 и x>4

Первое решение x≥5  

2.
х<2
x<4
x≥5   не удовлетворяет условиям x<2  x<4 

3.
x-2>0  ⇒x>2
x-4<0 ⇒x>4    ⇒x>4

3 ≥x²-6x+8
x²-6x+5≤0
x-5≤0 ⇒x≤5
x-1≥0 ⇒x≥1

1≤x≤5  
x>2
x>4 ⇒

Второе решение
4<x≤5

x-5≥0 ⇒x≥5
x-1≤0 ⇒x≤1  нет решения

4.
x-2<0⇒x<2
x-4>0⇒x>4⇒⇒2<x<4 начальное условие

3 ≥x²-6x+8
x²-6x+5≤0
x-5≤0 ⇒x≤5
x-1≥0 ⇒x≥1
1≤x≤5   и  2<x<4 начальное условие ⇒
⇒2<x<4  третье решение  но х≠3

3 ≥x²-6x+8
x²-6x+5≤0
x-5≥0 ⇒x≥5
x-1≤0 ⇒x≤1  нет общего решения

ответ:х>2 но х≠3 и х≠4 
х=(2;3)(3;4)(4;+ бесконечность)
4,7(33 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ