a) lim(x→∞) (3x⁶-x²+x)/(x⁶-2) Неопределённость ∞/∞.
Разделим одновременно числитель и знаментель на x⁶:
lim(x→∞) (3-(1/x⁴)+(1/x⁵))*(1-(2/x⁶))=(3-0+0)/(1-0)-3/1=3.
б) lim(x→1) (√(1+3x²)-2)/(x²-x) Неопределённость 0/0.
Возьмём одновременно производную от числителя и знаментеля:
lim(x→1) (√(1+3x²)-2)'/(x²-x)'=
=lim(x→1) 6*x/(2*√(1+3x)*(2x-1))=6/(2*2*1)=6/4=3/2.
в) lim(x→0) (sin(5*x)/(3*x) Неопределённость 0/0.
Возьмём одновременно производную от числителя и знаментеля: lim(x→0) (sin(5*x)'/(3*x)'=lim(x→0) 5*cos5x/3=5*1/3=5/3.
Покажем, что люди в возрасте от 1 до 18 лет в счастливую пару входить не могут. Обозначим через x возраст самого молодого человека, входящего в счастливую пару и через y возраст его партнера. Тогда имеет место неравенство x ≥ y/2 + 9 или (x-y/2) ≥ 9. Заметим, что (x-y/2) < x/2, поскольку y > x. Имеет место неравенство 2(x-y/2) ≥ 18, но так как 2(x-y/2) < x, то x > 18, то есть, возраст самого молодого человека, входящего в счастливую пару, строго больше 18 лет.
Покажем, что все пары (19, 20), (21, 22), (23, 24), ..., (93, 94) будут счастливыми. Легко проверить, что если x >= 10, то для чисел 2x-1 и 2x имеют место неравенства 2x-1 >= x + 9 и 2x >= (2x-1)/2 + 9. Всего счастливых пар будет 92/2 - 18/2 = 46 - 9 = 37.
х²-4х+4+8х=х² -1
х² -4х+4+8х-х²+1=0
4х==+5=0
4х=-5
х=-5/4
х=-1,25
2. { 6x-2y-5=2x-3y {6x-2y-2x+3y=5 {4x+y=5 {8x+2y=10
{ 5-x+2y=4y+16 {-x+2y-4y=16-5 {-x-2y=11 {-x-2y=11
{7x=21 {x=3 {x=3 {x=3
{-x-2y=11 {-3-2y=11 {-2y=14 {y=-7