Чтобы определить проходит ли график функции через данные точки, нужно координаты этих точек подставить в уравнение функции и проверить, выполняется ли равенство.
у=3х²-х-2
А (-1; 2)
2=3*(-1)²-(-1)-2
2=3+1-2
2=2
Равенство верно, следовательно график функции проходит через точку А.
В (2; 8)
8=3*2²-2-2
8=12-4
8=8
Равенство верно, следовательно график функции проходит через точку В.
С (0;3)
3=3*0²-0-2
3=-2
Равенство неверно, следовательно график функции не проходит через точку С.
D (1; 4)
4=3*1²-1-2
4=3-3
4=0
Равенство неверно, следовательно график функции не проходит через точку D.
ответ: график функции у=3х²-х-2 проходит через точку А (-1; 2) и В (2; 8).
2) f'(x)=0, (1/3)x²-2x=0, x²-6x=0, x(x-6)=0, x1=0, x2=6, критические точки
3)x∈(-∞; 0)∪(6;+∞), f'(x)>0, f(x)↑, функция возрастает, т.к. поизводная положительна
x∈(0; 6), f'(x)<0, f(x)↓, убывает, т.к. производная отрицательна на этом промежутке
4) x=0, x - max, f(0)=0
x=6, x- min, f(6)=(1/9)*6³-6²=6²((1/9)*6-1)=36*(2/3-1)=36*(-1/3)=-12
Из графика видно, что уравнение (1/9)х³-х²=-1 имеет три корня