М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Умник00Семь
Умник00Семь
18.11.2021 05:29 •  Алгебра

Составить уравнение окружности, проходящей через точки пересечения окружности x^2+y^2+4x-4y=0 с прямой y=-x и точку m1(4; 4)

👇
Ответ:
bojkovnikita
bojkovnikita
18.11.2021
Найдем точки пересечения окружности и прямой, подставив в уравнение окружности y=-x:
x²+(-x)²+4x+4x=0⇒2x²+8x=0⇒2x(x+4)=0⇒x₁=0; x₂=-4
итак, точки пересечения: A(0;0), B(-4;4)
cоставим систему уравнений, подставив в общее уравнение окружности
(x-a)²+(y-b)²=r₂ координаты точек A, B, M₁
(0-a)²+(0-b)²=r₂
(-4-a)²+(4-b)²=r²
(4-a)²+(4-b)²=r²
отнимем от второго уравнения третье
a²+b²=r²
(4+a)²-(4-a)²=0⇒16+8a+a²-16+8a-a²=0⇒16a=0⇒a=0
подставим во все уравнения a=0
b²=r²
16+(4-b)²=r²
16+(4-b)²=r²
подставим во второе уравнение r²=b²
b²=r²
16+16-8b+b²=b²⇒32-8b+b²-b²⇒8b=32⇒b=4
имеем решение системы a=0; b=4; r=4
уравнение окружности  x²+(y-4)²=4²
4,7(58 оценок)
Открыть все ответы
Ответ:
hekyljana156
hekyljana156
18.11.2021

Кол-во таких чисел=\frac{P}{P1P2}.

Здесь P -общее кол0во перестановок 6 чисел : P=6!=60*12 

P1 - число перестановок цифры 1 в этом числе. То есть мы как бы путем деления общего числа перестановок на число перестановк конкретной цифры убираем повторяющиеся перестановки, образуемые этой цифрой. Так как кол-во единиц в наборе 2 штуки, то

P1=2!=2

Аналогично для P2=3!=6 

P= \frac{60*12}{2*6}=60. 

если бы например в наборе были бы только единицы напрмиер, то получилось бы единственное возможное число, что доказывает некоторую универсальность моей формулой 

4,6(36 оценок)
Ответ:
maksim20081986
maksim20081986
18.11.2021

Кол-во таких чисел=\frac{P}{P1P2}.

Здесь P -общее кол0во перестановок 6 чисел : P=6!=60*12 

P1 - число перестановок цифры 1 в этом числе. То есть мы как бы путем деления общего числа перестановок на число перестановк конкретной цифры убираем повторяющиеся перестановки, образуемые этой цифрой. Так как кол-во единиц в наборе 2 штуки, то

P1=2!=2

Аналогично для P2=3!=6 

P= \frac{60*12}{2*6}=60. 

если бы например в наборе были бы только единицы напрмиер, то получилось бы единственное возможное число, что доказывает некоторую универсальность моей формулой 

4,4(10 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ