A) нет т.к. уравнение первой степени имеет ровно 1 корень б) нет т.к. при любом значении а получается уравнение вида из него получается что корень один и равен 2a
A(2-x)/12 - (2x-3)/8 = 3/8 приводим к общему знаменателю и домножим уравнение на него 2a(2-x)-3(2x-3)=3*3 4a-2ax - 6x + 9 = 9 4a-2ax-6x=0
a) Для того, чтобы корней было бесконечное множество, нам надо получить тождество, исключив x из уравнения, т.е. в нашем случае a=-3 мы получим -12 +6x-6x=0 -12=0. Т.к. тождество не получается, следовательно значений параметра a, при которых уравнение имеет бесконечное множество корней нет.
б) Для того, чтобы корней не было, хз как объяснить, на примере, x^2= -10, корней нет, или например если sqrt(x)<0 В нашем случае, линейная система, поэтому достичь такого мы не сможем, т.к. в любом случае у нас будет получатся корень x=2a/(a+3), a!=-3
Если площадь s(x) фигуры x разделить на площадь s(a) фигуры a , которая целиком содержит фигуру x, то получится вероятность того, что точка, случайно выбранная из фигуры x, окажется в фигуре a. обозначим за x и y время прихода, 0≤x,y≤60 (минут), так как время ожидания с 15.00 до 16.00 равно 60 мин. в прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата oabc. друзья встретятся, если между моментами их прихода пройдет не более 13 минут, то есть y-x< 13, y< x+13 (y> x) и x-y< 13 , y> x-13 (y< x).этим неравенствам удовлетворяют точки, лежащие в области х.для построения области х надо построить прямые у=х+13 и у=х-13.затем рассмотреть точки, лежащие ниже прямой у=х+6 и выше прямой у=х-13.кроме этого точки должны находиться в квадрате оавс.площадь области х можно найти, вычтя из площади квадрата оавс площадь двух прямоугольных треугольников со сторонами (60-13)=47: s(x)=s(oabc)-2*s(δ)=60²-2*1/2*47*47=3600-2209=1391.
б) нет т.к. при любом значении а получается уравнение вида
из него получается что корень один и равен 2a