Объясню на примере. Если дана функция f(x) = 8x, то это функция, зависящая от переменной х. Число в скобках - это значение переменной. Т. е. если f(x) = 8x, то, например, f(0) = 8*0 = 0, f(3) = 8*3 = 24, и т. д. Но есть 1 нюанс. Если задан, например, такой вопрос: "чему равно f(c) + 3, если f(x) = 8x?", то подставлять вместо x нужно только значение в скобках, а остальное добавлять к результату. Например, если сказано: f(x) = 8x f(c+3) = ? f(c) + 3 = ? Решаем: f(c+3) = 8(c+3) = 8c + 24 f(c) + 3 = 8(c) + 3 = 8c + 3
V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
F(x)=-18cos(x/6)-1/2*e^4x+C