Найдём уравнение касательных к графику функции f(x) = -8x-x².
f'(x) = -(8x)'-(x²)' = -8-2x
Уравнение для касательной с абсциссой точки касания x₁ = -6:
f'(x₁) = f'(-6) = -8-2·(-6) = -8+12 = 4;
f(x₁) = f(-6) = -8·(-6)-(-6)² = 48-36 = 12;
y = f'(x₁)·(x-x₁)+f(x₁) = 4·(x-(-6))+12 = 4x+24+12 = 4x+36.
Уравнение для касательной с абсциссой точки касания x₂ = 1:
f'(x₂) = f'(1) = -8-2·1 = -8-2 = -10;
f(x₂) = f(1) = -8·1-1² = -8-1 = -9;
y = f'(x₂)·(x-x₂)+f(x₂) = -10·(x-1)+(-9) = -10x+10-9 = -10x+1.
Стороны треугольника лежат на прямых:
y = 4x+36; y = -10x+1; x = 0.
Найдём вершины треугольника.
Сторона AB лежит на оси Oy, поэтому высота CH, треугольника ABC, будет параллельна оси Ox. А значит, CH = |-2,5| = 2,5.
AB = 36-1 = 35, поскольку эта сторона перпендикулярна оси Ох.
Площадь треугольника равна полупроизведению его высоты и стороны к которой она проведена.
S(ABC) = = 2,5·35/2 = 175/4 = 43,75
ответ: 43,75.
Если до встречи велосипедист проехал х км, то мотоциклист проехал х +16 км
х + х +16 = 84
2х = 68
х = 34(км) - проехал велосипедист.
34 + 16 = 50 (км) - проехал мотоциклист.
Вот теперь таблица
S V t
велосипед. 34км у км/ч 34/у ч
мотоцикл 50км у + 48 км/ч 50/(у +48) ч
34/у - 50/(у +48) = 2 |* у(у+48)≠ 0
34(у +48) - 50у = 2у(у +48)
34у + 1632 -50у = 2у² + 96у
2у² +112у - 1632 = 0
у² + 56у - 816 = 0
решаем по чётному коэффициенту:
х = -28 +-40
х₁ = -68 ( не подходит по условию задачи)
х₂ = 12(км/ч) - скорость велосипедиста
12 + 48 = 60(км/ч) - скорость мотоциклиста.