М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
baikalpearl
baikalpearl
17.11.2022 22:52 •  Алгебра

Начертите график функций : y= 4x -2x^2 + 6

👇
Ответ:
alinakiseleva12
alinakiseleva12
17.11.2022
Тут через нулевые Х  и У
Начертите график функций : y= 4x -2x^2 + 6
4,6(60 оценок)
Открыть все ответы
Ответ:
OGordienko1
OGordienko1
17.11.2022
Ну короче, смотри. область определение, это все те х, при которых твоё уравнение существует в принципе, т.е. подкоренное выражение должно быть больше либо равно нуля. решаем. 1/4+7х-2х^2. раскладываем квадратное уравнение на множители, т.е: -2х^2+7х+4=-2(х-х1)(х-х2)=-2(х+1/2)(х-4) - это я просто нашёл корни устно и подставил.а потом методом интервалов(он должен быть тебе знаком) находим, что х принадлежит :(-1/2;4) значит ответом должно быть число 3, т.к. 4 не входит в область определения. вроде как всё правильно посчитал(ответ В)
4,6(18 оценок)
Ответ:
Лиза090401
Лиза090401
17.11.2022

\[\frac{sin x}{4} * \frac{cos x}{4} = 0\]

Упростим уравнение, записав его под одну черту, так как между дробями умножение и получим:  

 \[\frac{sin x * cos x}{16}  = 0\]

Теперь подумаем. В числителе (то что вверху дроби) у нас почти есть формула тригонометрии, только не хватает 2. Для этого мы применим с Вами хитрость. Домножим обе части уравнения на 32 и получим следующее (в знаменателе 16 сократится с 32 в числителе и в числителе останется нужная нам 2):

 \[2sin x * cos x  = 0\]

По формулам тригонометрии мы знаем, что:  

 \[2sin x * cos x  = sin 2x\]

Запишем наше красивое уравнение:  

 \[sin 2x = 0\]

А теперь его решим.

Чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит так:  

 \[sin x = a\]

 

 \[x = (-1)^{k}arcsin a + \pi k, k \in \mathbb{Z}\]

Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:  

 \[sin 2x = 0\]

Но у нас будет не просто х, а двойной:  

 \[2x =  (-1)^{k}arcsin 0 + \pi k, k \in \mathbb{Z}\]

Значение arcsin 0 мы найдём при таблицы. И исходя из этого получаем, что arcsin 0 = 0

Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:  

 \[sin 2x = 0 \]

 

 \[2x = \pi k, k \in \mathbb{Z}\]

Чтоб найти х надо каждый член поделить на два и из этого получим следующее:

 \[x = \frac{\pi k}{2}, k \in \mathbb{Z}\]

ответ: x = \frac{\pi k}{2}, k \in \mathbb{Z}

4,6(6 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ