![1)\quad \int (x+1)(5x-3)dx=\int (5x^2+2x-3)dx=\frac{5x^3}{3}+x^2-3x+C\\\\2)\quad \int \frac{x^2\, dx}{\sqrt{1-x^2}} =[\, x=sint,\; dx=cost\, dt,\; t=arcsinx\, ]=\\\\=\int \frac{sin^2t\cdot cost\, dt}{\sqrt{1-sin^2t}} =\int \frac{sin^2t\cdot cost\, dt}{ \sqrt{cos^2t} } =\int \frac{sin^2t\cdot cost\, dt}{cost} =\int sin^2t\, dt=\\\\=\int \frac{1-cos2t}{2} dt=[\, \int cos(kx+b)dx=\frac{1}{k}sin(kx+b)+C\, ]=](/tpl/images/0576/4647/378a0.png)

a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение:
S(x)=Vx*t
x(t)=xo+Vx*t - это равномерное движение со скоростью Vx (проекция).
Она не меняется. Среднюю скорость вычисляют, если тело на разных участках пути двигалось с разной скоростью.
x(t)=3+6*t
3 м - начальная координата хо, 6 м/с - скорость равномерного движения Vx.
Vcp=Vx=6 м/с на любом участке пути. Какой бы интервал времени вы не взяли, скорость будет 6 м/с
S(t) - пройденный путь. От начальной координаты не зависит.
ответ: 6 м/с.
S(2)=6*2+3=15
S(5)=6*5+3=33
Vcp=(S(5)-S(2))/(t2-t1)=(33-15)/(5-2)=18/3=6 м/с.
Объяснение: