y=x²-4x-5 проверка по Виету корни 5 и -1. График строить по точкам обоих корней, вершины х=2 y=-9 и пересечения с осью у х=0 у=-5 ось симметрии х=2
3. |x-3|=-√x+3 аналитически 0<x<3 3-x=-√x+3 видим корень х=0 x-3=-√x+3 x+√x=6 x²+x²+2x√x=36 x²+x√x=36 √x=t t⁴+t³=36 и так далее... Но нас просят решить графически. Строим |x-3| это "галочка сидящая на х=3". мы строим 2 луча из точки х=3 по формулам у=х-3 при х≥3 у=3-х при х<3. Затем строим у=-√х +3 или непонятно -√(х+3) График строится по точкам - под корнем≥0 в первом случае х≥0 в другом х≥-3 и ищутся точки пересечения двух графиков.
4-24*5=4-120=-116
2
y`=(-sinx*e^x-cosx*e^x)/e^2x=-e^x(sinx+cosx)/e^2x=-(sinx+cosx)/e^x
3
y(3)=1/3
y`=-1/x²
y`(3)=-1/9
y=1/3-1/9*(x-3)=1/3-1/9*x+1/3=-1/9*x+2/3