Вразложении бинома биномиальный коэффициент пятого члена относится к коэффициенту третьего члена, как 1: 2. выпишите члены разложения,не содержащие иррациональность.
Пятый биномиальный коэффициент разложения равен C(n,4). Третий биномиальный коэффициент равен C(n,2). По условию, C(n,4)/C(n,2)=1/2 2*C(n,4)=C(n,2) 2*n!/((n-4)!*4!)=n!/((n-2)!*2!) 2 / 4! = 1/((n-2)(n-3)*2!) (n-2)(n-3)=6 n^2-5n=0 Отсюда n=5. Общий вид члена разложения бинома Ньютона при n=5 выглядит так: Очевидно, что иррациональности не будет, если k нечетное. Выпишем 2-й (k=1), 4-й (k=3) и 6-й (k=5) члены разложения: k=1: k=3: k=5:
А)y`=dy/dx (1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными ydy=eˣdx/(1+eˣ) ∫ydy=∫eˣdx/(1+eˣ) y²/2=ln|eˣ+1| + c - общее решение Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить. y²/2=lnС(eˣ+1) - общее решение при у=1 х=0 1/2=ln2C 2C=√e C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение можно умножить на 2 y²=2ln((eˣ+1)· (√e)/2) или y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx tgxdy=y㏑ydx - уравнение с разделяющимися переменными dy/ylny=dx/tgx; ∫dy/ylny=∫dx/tgx; ∫d(lny)/lny=∫d(sinx)/sinx; ln|lny)=ln|sinx|+lnC; ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4 ln|lne|=ln|Csin(π/4)| ln|1|=ln|C√2/2| 1=C√2/2 C=√2 ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
А)y`=dy/dx (1+eˣ)ydy=eˣdx - уравнение с разделяющимися переменными ydy=eˣdx/(1+eˣ) ∫ydy=∫eˣdx/(1+eˣ) y²/2=ln|eˣ+1| + c - общее решение Можно вместо с взять lnC и заменить сумму логарифмов, логарифмом произведения. Так как eˣ>0, то eˣ+1>0, знак модуля можно опустить. y²/2=lnС(eˣ+1) - общее решение при у=1 х=0 1/2=ln2C 2C=√e C=(√e)/2
y²/2=ln((eˣ+1)· (√e)/2) - частное решение можно умножить на 2 y²=2ln((eˣ+1)· (√e)/2) или y²=ln((eˣ+1)²·e/4) - частное решение
b) y`=dy/dx tgxdy=y㏑ydx - уравнение с разделяющимися переменными dy/ylny=dx/tgx; ∫dy/ylny=∫dx/tgx; ∫d(lny)/lny=∫d(sinx)/sinx; ln|lny)=ln|sinx|+lnC; ln|lny|=ln|Csinx| - общее решение дифференциального уравнения.
При y=e x=π/4 ln|lne|=ln|Csin(π/4)| ln|1|=ln|C√2/2| 1=C√2/2 C=√2 ln|lny|=ln|(√2)·sinx| - частное решение дифференциального уравнения.
2*C(n,4)=C(n,2)
2*n!/((n-4)!*4!)=n!/((n-2)!*2!)
2 / 4! = 1/((n-2)(n-3)*2!)
(n-2)(n-3)=6
n^2-5n=0
Отсюда n=5.
Общий вид члена разложения бинома Ньютона при n=5 выглядит так:
Очевидно, что иррациональности не будет, если k нечетное.
Выпишем 2-й (k=1), 4-й (k=3) и 6-й (k=5) члены разложения:
k=1:
k=3:
k=5: