Объяснение:
1. 5(2×0,6+1)-3=5(1,2+1)-3=5×2,2-3=11-3=8
2.а) 5х^3×(-2х^2)=-10х^5
б) 2а-(6в-а)+(6в-2а) = 2а-6в+а+6в-2а=а
в)(3x - 1)(3x + 1) + - (3x + 1)^2 = 9x^2 + 1 - 9x^2 + 6x + 1 = 6x + 2
г)(2х^3у)^3=8х^9у^3
3. а)2ху-6у^2=2у(х-3у)
б) а^5-4а^3=а^3(а^2-4)
в) а^3-2а^2+18-9а=а^2(а-2)+9(2-а)
4. а) 4(2-4х)=3-6х
8-16х=3-6х
-16х+6х=3-8
-10х=-5
х=-5÷(-10)=0,5
б) (х-1)(х+7)=0
х^2+7х-х-7=0
х^2 +6х-7=0
за теоремой Виета
х1+х2=-6
х1×х2= -7. х1=-7. х2=1
в) 2у^2-18=0
2у^2=18
у^2=9
у=3;у=-3
5. 1 день -х
2 день - х-10
3 день - х-10-5
х+х-10+х-10-5= 50
3х -25=50
3х=75
х= 25
1день 25км
2 день 15км
3день 10км
НАЙДИТЕ ОБЛАСТЬ ОПРЕДЕЛЕНИЯ ВЫРАЖЕНИЯ :
√( -2x² + 5x + 2 )
"решение " : -2x² + 5x + 2 ≥0 ⇔ 2x² - 5x - 2 ≤ 0
* * * ax²+bx+c =a(x - x₁ )(x - x₂ ) * * *
2x² - 5x - 2 =0 D = 5² -4*2*(-2) =25 +16 =41 >0
x₁,₂ = (5±√41) /(2*2)
x₁ = (5 - √41) / 4
x₂ =5 + √41) / 4
2x² - 5x - 2 = 2( x - x₁ )(x - x ₂) = 2( x - (5 - √41) / 4 )( x - (5 +√41) / 4 )
- - -
2( x -(5 -√41) / 4 )( x - (5 +√41) / 4 ) ≤ 0⇔( x - (5 - 41) / 4 )( x - (5 +√41) / 4 ) ≤0
⇒ (5 - 41) / 4 ≤ x ≤ (5 + 41) / 4
ответ : x ∈ [ (5 - 41) / 4 ; (5 + 41) / 4 ]
sinx=a
2a²-3a-2=0
D=9+16=25
a1=(3-5)/4=-1/2⇒sinx=-1/2⇒x=(-1)^(n+1)*π/6+πn,n∈z
a2=(3+5)/4=2⇒sinx=2>1 нет решения
2)3cosx-2sinx=0/сosx
3-2tgx=0
tgx=1,5
x=arctg1,5+πn,n∈z
3)2sinx- √3=0
sinx=√3/2
x=(-1)^n*π/3+πn,n∈z