f(x) = 1/3 x^3 - x^2 + 6
Продифференциируем функцию
f ' (x) = x^2 - 2x
Приравняем производную к нулю
x^2 - 2x = 0
x (x - 2) = 0
x = 0, или x - 2 = 0
Из вышеназванного следует, что точки экстремума - это ноль и два
Возьмём число один, для проверки знаков в следующих промежутках
(минус бесконечность ; ноль), (ноль ; два), (два ; плюс бесконечность)
f ' (1) = 1 - 2 = - 1
Значит, что в среднем промежутке будет знак минус, в боковых плюс, из чего следует, что на промежутке от минус бесконечности до нуля производная функции положительна (сама функция возрастает), на промежутке от нуля до двух производная отрицательна (функция убывает), а на промежутке от двух до плюс бесконечности производная опять становится положительной, а функция возрастает...
Точка "ноль" - точка максимума
Точка "два" - точка минимума
Фатимка, дальше я не знаю, как решать, но надеюсь, что материал вам пригодится
и
. Чтобы найти для них общий знаменатель, нужно найти найменьшее общее число которое нацело делилось бы на знаменатель первого и второго дроба, в даном случае знаменатели это 25 и 4. Ну можно взять больший знаменатель умножить на 2 и проверить делится ли это число нацело на первый и другой знаменатель, если не делится ужножаеш на 3 и проверяеш, и так далее. Часто бывает, что один с знаменателей уже делится на себя и на второй знаменатель, тогда это и будет общий знаменатель. Потом оно само будет получаться, потому что будешь знать что на что делится.
+
;
;
=
, если можно сократить (то есть и числитель и множитель делится на одинаковое число), то сокращаем.
1) -8х-3=-6х+10
-2х = 13
х=-6,5
2) 2,5*(3х-2)-4*(2х+0,5)= -4
7,5 х - 5 - 8х - 2=-4
-0,5х-5=-4
-0,5х= 1
х= -2