Пусть вся работа будет одно целое обозначим за единицу, т.е. 1 Пусть первый рабочий работает х дней, тогда второй (х+10) дней Тогда первый будет работать с производительностью 1/х Второй будет работать с производительностью 1/(х+10) А их общая производительность 1/12 (скорость выполнения работы) Составим уравнение 1/х + 1/(х+10) = 1/12 Приведём к общему знаменателю (х+10+х)/(х(х+10)) = 1/12 12(2Х+10)=х(х+100 24х+120-х^2-10х=0 -х^2+14х+120=0 Д=676 х1=20 х2=-6 не является решением ответ первый выполняет работу за 20 дней, второй за 30
Для удобства вычислений представим корни чисел в виде дробной степени. Поскольку основания целые, а степени положительные, можно возвести сравниваемые числа в одну и ту же степень, а затем сравнивать. Большее полученное число будет означать, что и первоначальное значение корня было больше. Возведем в степень, кратную степеням корней; т.е. в 15-ю степень, (3*5=15). При возведении степени в степень показатели перемножаются, т.е. (1/3)*15 = 15/3 = 5 ; (1/5)*15 = 15/5 = 3
производная в точке х0.