Для удобства сразу переведём проценты в десятичные дроби:
100% - 1
60% - 0,6
70% - 0,7
40% - 0,4
1)1+0,6=1,6 (или 160%)-составила продажная цена товара от закупочной цены
2)1-0,4=0,6 (или 60%)-составила цена товара после уценки на 40%
3)1,6*0,6=0,96 (или 96%) -составила цена товара после уценки по отношению к
первоначальной продажной цене
4)1-0.7=0,3 (или 30%)- от товара продано с уценкой на 40%
5)0,7*1,6+0,3*0,96=1,408 (или 140,8%)-составила общая продажная цена на товар
6)1,408-1=0,408 (или 40,8%) -составила прибыль магазина от закупочной цены
ответ: 40,8%
Пусть скорость одного велосипедиста равна x, тогда скорость другого равна x + 3.Расстояние равно 36 км, значит, первый велосипедист шёл 36 / x часов, а другой ехал 36 / (x+3) часов. По условию первый велосипедист доехал на час быстрее, отсюда составим и решим уравнение:
36 / x - 36/(x+3) = 1
36 / x - 36 / (x+3) - 1 = 0
36(x+3) - 36x - x(x+3) / x(x+3) = 0
(36x + 108 - 36x - x² - 3x) / x(x+3) = 0
(-x² - 3x + 108) / x(x+3) = 0
Дробь равна 0 тогда, когда числитель равен 0, а знаменатель не равен 0. Отсюда
x² + 3x - 108 = 0, а x(x+3)≠ 0, поэтому x≠0, x≠-3
D = 9 + 432 = 441
x1 = (-3 - 21) / 2 = -24 / 2 = -12 - не удовлетворяет условию, так как скорость не может быть выражена отрицательным числом
x2 = (-3 + 21) / 2 = 18 / 2 = 9 км/ч - скорость одного из велосипедистов
Скорость другого равна 9 + 3 = 12 км/ч
∫ x dx - 3∫ x^2 dx=1/2 x^2 - 3* 1/3 x^3= 1/2 x^2 - x^3 на пределах интегрирования получится 1/2 (2^2-1)- (2^3-1)=1/2*3-7 = -11/2
2. Здесь тоже довольно просто- нужно знать производную тангенса.
∫1/Cos^2(2x)dx= \делаем замену переменных: 2x=t, 2dx=dt\ = 1/2 ∫ 1/Cos^2[t] dt= 1/2 Tan[t], но уже на пределах от нуля до pi/3- посмотри на замену переменных. Тогда интграл будет равен 1/2(Tan[pi/3]-Tan[0])=√3/2
3. Здесь тоже не так трудно, как может показаться на первый взгляд
∫(2-3x)^5 dx = -1/(3*6) (2-3x)^6 на пределах интегрирования даст
-1/18 [ (2-3*1)^6-(2-3(1/3))^6 ] =-1/18 (1- 1)=0
4. Воспользовавшись четностью подынтегральной функции, можно записать как 2 интеграла от нуля до 3
2∫√(9-x^2)dx= \ x=3sint, dx=3cost dt\ = 2∫√(9-9sin^2(t)) cos(t) dt= 6∫√(1-sin^2(t)) cost dt= 18∫cos^2(t)dt=9∫(1+cos(2t))dt=9t+9/2sin(2t) на подстановке даст, учтя смену пределов интегрирования (t=pi/2, t=0) получим 9pi/2
5. По сути это уравнение в слегка усложненной записи.
Разделением интегралов на 2 и интегрированием, зная, что ∫x^p dx= 1/(p+1) * x^(p+1), получим 1/4(x^4)+5/2 x^2
На пределах интегрирования это даст
1/4( (a+2)^4- a^4) + 5/2 ((a+2)^2-a^2) = 4+8a+6a^2+2a^3 + 10+10a = 14+18a+6a^2+2a^3 = 0 по условию