Объяснение:
1)одинаковыми значками отмечены равные стороны. Значит
СО=ОД=4
Ао=ОВ=3
∠СОА=∠ВОД - вертикальные.
ΔСОА≅ΔДОВ по двум сторонам и углу между ними. значит и третьи стороны равны СА=ВД=5
5+4+3=12
ответ Р=12 см.
2)ΔАВС≅ΔСДА - по трем сторонам. СВ=ДА=6,АВ=СД=4,АС=7. Р=7+6+4=17 см.
ответ Р=17 см
3)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС) ⇒КД=МД -против равных углов в равных треугольниках лежат равные стороны
КВ=ВМ -дано,ВД -общая.(равна сама себе) . Отсюда по трем сторонам ΔКВД≅ΔМВД что и требовалось доказать.
4)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С
ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС)
Якщо число x є розв'язком як нерівності x>−4, так і нерівності х<5, тоді воно є розв'язком подвійної нерівності −4<x<5.
Множину усіх чисел, що задовільняють подвійній нерівності −4<x<5 називають числовим проміжком і позначають: (−4;5).
Зобразимо проміжок на малюнку. Точки малюємо виколотими, оскільки вони не належать проміжку.
51_t02(1).png
Розглянемо інші проміжки.
−4≤x≤5 або x∈[−4;5]. Читається: «Проміжок від −4 до 5, включаючи −4 та 5».
51_t02(4).png
−4≤x<5 або x∈[−4;5). Читається: «Проміжок від −4 до 5, включаючи −4».
51_t02(2).png
−4<x≤5 або x∈(−4;5]. Читається: «Проміжок від −4 до 5, включаючи 5».
51_t02(3).png