М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
дарья1645
дарья1645
27.04.2021 23:36 •  Алгебра

Не списываете с фотоматча и напишите в тетраде ! 1! 1 у меня щас 22: 46 спать хочц

👇
Ответ:
zymzym55
zymzym55
27.04.2021

вот полное решение, держи


Не списываете с фотоматча и напишите в тетраде ! 1! 1 у меня щас 22: 46 спать хочц
4,5(88 оценок)
Открыть все ответы
Ответ:
Summerween
Summerween
27.04.2021

Объяснение:

y=8-\frac{4x}{x^2}-2x

На 0 делить нельзя. Область определения: (-∞;0)∪(0;∞)

\lim_{x \to +0} (8-\frac{4x}{x^2}-2x)=-\infty \\ \lim_{x \to -0} (8-\frac{4x}{x^2}-2x)=\infty

Т.к х не равен 0, то точек пересечения с осью у нет. Находим точки пересечения с осью х.

8-\frac{4x}{x^2}-2x=8-\frac{4}{x}-2x=\frac{8x-4-2x^2}{x}\\ \frac{8x-4-2x^2}{x}=0\\8x-4-2x^2=0\\x^2-4x+2=0

Решаем квадратное уравнение, находим точки пересечения с осью х:

x_1=2-\sqrt{2} \\x_2=2+\sqrt{2}

Находим точки экстремума (производная равна нулю).

(8-\frac{4x}{x^2}-2x)'=(8-\frac{4}{x}-2x)'=\frac{4}{x^2}-2;\\ \frac{4}{x^2}-2=0\\ \frac{2}{x^2}=1\\x=\pm \sqrt{2};\ \ y(-\sqrt{2})=8+4\sqrt{2};\ \ y(2)=8-4\sqrt{2}

Для нахождения точек перегиба находим вторую производную

y''=(\frac{4}{x^2}-2)'= (4x^{-2}-2)'=-\frac{8}{x^3}

Вторая производная нигде не равна нулю, точек перегиба нет.

Горизонтальных асимптот нет. Вертикальная асимптота одна: х=0.

Ищем наклонную асимптоту:

k= \lim_{x \to \pm \infty} \frac{f(x)}{x}= \lim_{x \to \pm \infty} (\frac{8}{x}-\frac{4}{x^2}-2 )=-2

b= \lim_{x \to \pm \infty} (f(x)}-k{x})= \lim_{x \to \pm \infty} (8-\frac{4}{x}-2x+2x )=8

Наклонная асимптота есть:

y=-2x+8

Дальнейшее исследование проводим, заполняя таблицу (см. рис.1).


Постройте график функции: y=8-4x/x^2-2x.
4,4(23 оценок)
Ответ:
6дкоув
6дкоув
27.04.2021

4

Запишем условие:

lgx + lg(x - 2) = lg(12 - x)

Складываем логарифмы в левой части, тогда:

lgx(x - 2) = lg(12 - x)

Так как 1 основание, решаем как обычное уравнение:

х(х - 2) = 12 - х

Раскороем скобки слева, откуда:

х^2 - 2х = 12 - х

Переносим правую часть влево, тогда:

х^2 - 2х - 12 + х = 0

Приводим подобные:

х^2 - х - 12 = 0

Решаем через дискриминант:

Находим дискриминант:

D = b^2 - 4ac

D = 1 - 4*1*(-12)

D = 1 - (-48)

D = 1 + 48 = 49

sqrt(D) = sqrt(49) = 7

x1 = (-b + sqrt(D))/2a = (1 + 7)/2 = 8/2 = 4

x2 = (-b - sqrt(D))/2a = (1 - 8)/2 = -3,5 - посторонний корень

Проверка:

Проверяем х1:

lg4 + lg(4 - 2) = lg(12 - 4)

lg4 + lg2 = lg8

Складываем логарифмы слева, тогда:

lg(4*2) = lg8

lg8 = lg8

Следовательно, х1 является действительным (правильным) корнем уравнения.

Проверяем х2:

lg(-3,5) + lg(-3,5 - 2) = lg(12 - 3,5)

lg(-3,5) + lg(-5,5) = lg8,5

Складываем логарифмы в левой части, тогда:

lg(19,25) > lg8,5

Следовательно, х2 посторонний корень данного уравнения.

4,6(95 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ