М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
irisha190784
irisha190784
28.04.2021 18:38 •  Алгебра

Буду ! даны координаты вершин треугольника: a(1,0) b(-1; 2) c(-5; -2) 1)составить уравнение стороны ab 2)составить уравнение высоты ad 3)найти длину медианы be 4)найти точку пересечения высот треугольника abc

👇
Ответ:
rsdgdddddddddddd
rsdgdddddddddddd
28.04.2021
1)   Уравнения стороны АВ:
 Х-Ха         У-Уа
       
Хв-Ха   =    Ув-Уа

(х-1)/(-1-1) = (у-0)/(2-0),
(х-1)/-2 = у/2.
 у = к* х + в
Кав = (Ув-Уа)/(Хв-Ха) = 2/-2 = -1.
у = -х + 1.

2) Находим длины сторон:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √8 2.828427125. 
BC = √((Хc-Хв)²+(Ус-Ув)²) = √32 = 5.656854249.
AC = √((Хc-Хa)²+(Ус-Уa)²) = √40 = 6.32455532.
По формуле Герона находим площадь треугольника:
Можно площадь найти по координатам вершин:
Площадь треугольника S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 8.
Длина высот АД = 2S/ВС  = 2*8/5.656854249 = 2.828427.

3) Основания медиан (точки пересечения медиан со сторонами).Е(Хв1;Ув1) = (Ха+Хс)/2; (Уа+Ус)/2
 Е (-2; -1).
BЕ = √((Хв1-Хв)²+(Ув1-Ув)²)) = 3.16227766.

4) Треугольник - прямоугольный:
УГЛЫ ТРЕУГОЛЬНИКА Угол BAC при 1 вершине A:   в радианах = 1.10714871779409   в градусах = 63.434948822922 Угол ABC при 2 вершине B:   в радианах = 1.5707963267949   в градусах = 90 Угол BCA при 3 вершине C:   в радианах = 0.463647609000806   в градусах = 26.565051177078.

Поэтому точка пересечения высот треугольника ABC это точка В.
4,8(91 оценок)
Открыть все ответы
Ответ:
Mymir06
Mymir06
28.04.2021

2sin2x + 3sinxcosx - 3cos2x = 1;

Представим 1 в виде суммы по основному тригонометрическому тождеству:

sin2x + 3cosxsinx - 3cos2x = sin2x + cos2x;

Приведем подобные:

sin2x + 3cosxsinx - 4cos2x = 0;

Разделим каждый член уравнения на cos2x:

tg2x + 3tgx - 4 = 0;

Произведем замену и решим квадратное уравнение:

t2 + 3t - 4 = 0;

D = 9 + 16 = 25;

t = (-3 +- 5)/2;

t1 = -4, t2 = 1;

Сделаем обратную замену:

tgx = 1; x = pi/4 + pin, n из Z;

tgx = -4; x = arctg(-4) pin, n из Z.

ответ: pi/4 + pin, n из Z; arctg(-4) pin, n из Z.

Объяснение:

Оцени!

4,8(56 оценок)
Ответ:
BC122
BC122
28.04.2021
1) xy'+y=0
Разрешим наше дифференциальное уравнение относительно производной
y'=- \dfrac{y}{x} - уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
\dfrac{dy}{dx} =- \dfrac{y}{x} \\ \\ \dfrac{dy}{y} =- \dfrac{dx}{x}
Интегрируя обе части уравнения, получаем
\ln|y|=\ln| \frac{1}{x} |+\ln C\\ \\ \ln|y|=\ln| \frac{C}{x}|
y= \dfrac{C}{x}- общее решение

(1-x^2) \frac{dx}{dy} +xy=0\\ \\ (1-x^2) \frac{dx}{dy} =-xy
Разделяем переменные
\dfrac{(x^2-1)dx}{x} = ydy

интегрируя обе части уравнения, получаем

-\ln|x|+ \dfrac{x^2}{2} = \dfrac{y^2}{2} +C - общий интеграл

Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует

Пример 3. x^2+y^2-2xy\cdot y'=0
Убедимся, является ли дифференциальное уравнение однородным.
(\lambda x)^2+(\lambda y)^2-2\cdot\lambda x\cdot \lambda y\cdot y'=0 |:\lambda^2\\ \\ x^2+y^2-2xyy'=0

Итак, дифференциальное уравнение является однородным.
Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену 
y=ux, тогда y'=u'x+u

Подставляем в исходное уравнение

x^2+u^2x^2-2x\cdot ux(u'x+u)=0\\ \\ x^2(1+u^2-2uu'x-2u^2)=0\\ \\ x=0\\ \\ 1-u^2-2uu'x=0\\ \\ u'= \dfrac{1-u^2}{2ux}

Получили уравнение с разделяющимися переменными

Воспользуемся определением дифференциала

\dfrac{du}{dx} =\dfrac{1-u^2}{2ux}

Разделяем переменные

\dfrac{du^2}{1-u^2} = \dfrac{dx}{x}

Интегрируя обе части уравнения, получаем

\ln\bigg| \dfrac{1}{1-u^2} \bigg|=\ln|Cx|

\dfrac{1}{1-u^2} =Cx

Обратная замена

\dfrac{x^2}{x^2-y^2} =Cx - общий интеграл

Пример 4. y''-4y'+4=0
Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное.
Воспользуемся методом Эйлера
Пусть y'=e^{kx}, тогда будем иметь характеристическое уравнение следующего вида:
k^2-4k+4=0\\ (k-2)^2=0\\ k_{1,2}=2

Тогда общее решение будет иметь вид:

y=C_1y_1+C_2y_2=C_1e^{2x}+C_2xe^{2x} - общее решение

Пример 5. y''+4y'-5y=0
Аналогично с примером 4)
Пусть y=e^{kx}, тогда получаем
k^2+4k-5=0\\ (k+2)^2-9=0\\ \\ k+2=\pm 3\\ k_1=1\\ k_2=-5

Общее решение: y=C_1e^{x}+C_2e^{-5x}

Найдем производную функции
y'=C_1e^x-5C_2e^{-5x}

Подставим начальные условия

\displaystyle \left \{ {{4=C_1+C_2} \atop {2=C_1-5C_2}} \right. \to \left \{ {{C_1=4-C_2} \atop {2=4-C_2-5C_2}} \right. \to \left \{ {{C_1= \frac{11}{3} } \atop {C_2=\frac{1}{3} }} \right.

y=\frac{11}{3} e^x+\frac{1}{3} e^{-5x} - частное решение
4,4(24 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ