нехай перший рухався зі швидкістю х км/год, а другий у км/год. тоді перший пройшов до зустрічі 3х км, а другий 3у км., а разом 3х+3у=27 км за умовою перший прийшов на 1 год 21 хв=1,35 год раніше. тому 27/у-27/х=1,35 складемо систему рівнянь [latex] \left \{ {3x+3y=27} \atop {27/y-27/x=1.35}} \right. [/latex] виразимо в першому рівнянні х через у х=9-у підставимо в друге рівняння 20х-20у=ху . маємо: 180-20у-20у=9у-у² у²-49у+180=0 d=1681 y1=(49+41)/2=45 y2=4 тоді x1=9-45=-36 , що не задов умові і х2=9-4=5 км/год швидкість першого пішохода 5 км/год, а другого 4 км/год
Легко проверить, что P² и P³ содержат только положительные коэффициенты (при этом проверять можно только чуть больше половины коэффициентов - многочлен симметричный).
Остается показать, что этого достаточно, чтобы любая степень Pⁿ, n ≥ 2 имела только положительные коэффициенты. Это верно, т.к.:
а) понятно, что если P, Q - многочлены с положительными коэффициентами, то и PQ - многочлен с положительными коэффициентами (следует из правила умножения многочленов)
б) Pⁿ разлагается в произведение P², P³ (можно доказать, например, по индукции: (база) для n = 2, 3 уже всё проверено, (переход) пусть для всех степеней 2, 3, ..., n (n ≥ 3) верно. Тогда верно и для n + 1, т.к. Pⁿ⁺¹ = P² Pⁿ⁻¹, а P², Pⁿ⁻¹ - с положительными коэффициентами по предположению индукции)