М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Tanjusha576
Tanjusha576
22.06.2021 21:59 •  Алгебра

Вычислить: 1) 2 умножить на 36 в степени одна вторая 2) 27 в степени минус одна третья вырожение: 1) а в степени минус одна вторая умноженное на а в степени три четвертых 2) с в степени две третьих умноженное на с в степени одна вторая в числителе и с в степени одна шестая в знаменателе 3)скобочка открывается х в сепени одна третья скобочка закрывается все это в минус треьей степени умноженное на х степени две третьих сократите дробь: 1) б плюс 7б в степени одна вторая в числителе и 7 плюс б в степени одна вторая в знаменателе 2) 3 плюс а в степени одна вторая в числителе и а минус 9 в знаменателе

👇
Ответ:
karrygreenk
karrygreenk
22.06.2021
1)2*^36=2*6=12
2)19683
3)а в степени -одна вторая+степень три четвертых=а в степени одна четвертая
4)с в степени две третьих+степень одна вторая- одна шестая=с в степени 1=с
5)х в степени минус одна третья
сократить дробь:
1)возможно б делить на 7
2)один делить на корень из а минус 3
4,5(58 оценок)
Открыть все ответы
Ответ:
Pulpy1235
Pulpy1235
22.06.2021
Раскладываем на множители sin+sin3x+sin5x
sinx+sin3x+sin5x=sinx+sin(x+2x)+sin(3x+2x)=sinx+sinx*cos2x+cosx*sin2x+sin3x*cos2x+cos3x*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+sin(2x+x)*cos2x+cos(x+2x)*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+(2sinx*cos^2x+cos2x*sinx)*cos2x+(cosx*cos2x-sinx*sin2x)*2sinx*cosx=sinx(1+cos2x+2cos^2x+(2cos^2x+cos2x)*cos2x+2cosx*(cosx*cos2x-sinx*sin2x))=sinx(1+cos2x+2cos^2x+cos^2(2x)+2cos^2x*cos2x+2cos^2x*cos2x-4sin^2x*cos^2x)=sinx(1+cos2x+2cos^2x+cos^2(2x)+4cos^2x*cos2x-sin^2(2x))=sinx(2cos^2(2x)+cos2x+2cos^2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+cos2x+1+cos2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+2cos(2x)+2(1+cos2x)*cos2x+1)=sinx(2cos^2(2x)+2cos2x+2cos2x+2cos^2(2x)+1)=sinx(4cos^2(2x)+4cos(2x)+1)=sinx*(2cos(2x)+1)^2

теперь раскладываем cosx+cos3x+cos5x
cosx+cos3x+cos5x=cosx+cos(2x+x)+cos(2x+3x)=cosx+cos2x*cosx-sin2x*sinx+cos2x*cos3x-sin2x*sin3x=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*cos(x+2x)-2sinx*cosx*sin(x+2x)=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*(cosx*cos2x-2sin^2x*cosx)-2sinx*cosx*sin(x+2x)=cosx(1+cos2x-2sin^2x+cos^2(2x)-2sin^2x*cos2x-2sinx*(sinx*cos2x+cosx*sin2x))=cosx(2cos2x+cos^2(2x)-2sin^2x*cos2x-2sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-4sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-2(1-cos2x)*cos2x-sin^2(2x))=cosx(2cos2x+cos^2(2x)-sin^2(2x)-2cos2x+2cos^2(2x))=cosx(2cos^2(2x)-1+2cos2x-2cos2x+2cos^2(2x))=cosx(4cos^2(2x)-1)=cosx(2cos2x-1)(2cos2x+1)
подставляем в уравнение:
\frac{sinx*(2cos(2x)+1)^2}{cosx*(2cos2x-1)(2cos2x+1)}+2tgx=0
\\tgx* \frac{(2cos(2x)+1)^2}{(2cos2x-1)(2cos2x+1)} +2tgx=0
\\tgx(\frac{(2cos(2x)+1)^2}{(2cos2x-1)(2cos2x+1)} +2)=0
\\tgx=0
\\x_1=\pi n
\\\frac{(2cos2x+1)^2}{(2cos2x-1)(2cos2x+1)} +2=0
\\ \frac{2cos2x+1}{2cos2x-1} +2=0
\\ \frac{2cos2x+1+4cos2x-2}{2cos2x+1} =0
\\2cos2x+1 \neq 0
\\cos2x \neq -\frac{1}{2} 
\\2cos2x+1+4cos2x-2=0
\\6cos2x=1
\\cos2x= \frac{1}{6} 
\\2x=arccos( \frac{1}{6} )+2\pi n
\\x_2=0,5*arccos(\frac{1}{6})+\pi n
2x=-arccos( \frac{1}{6} )+2\pi n
\\x_3=-0,5*arccos(\frac{1}{6})+\pi n
ответ: x_1=\pi n;\ x_2=0,5*arccos(\frac{1}{6})+\pi n;\ x_3=-0,5*arccos(\frac{1}{6})+\pi n
4,7(6 оценок)
Ответ:
Sofia667
Sofia667
22.06.2021
Раскладываем на множители sin+sin3x+sin5x
sinx+sin3x+sin5x=sinx+sin(x+2x)+sin(3x+2x)=sinx+sinx*cos2x+cosx*sin2x+sin3x*cos2x+cos3x*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+sin(2x+x)*cos2x+cos(x+2x)*sin2x=sinx+sinx*cos2x+2sinx*cos^2x+(2sinx*cos^2x+cos2x*sinx)*cos2x+(cosx*cos2x-sinx*sin2x)*2sinx*cosx=sinx(1+cos2x+2cos^2x+(2cos^2x+cos2x)*cos2x+2cosx*(cosx*cos2x-sinx*sin2x))=sinx(1+cos2x+2cos^2x+cos^2(2x)+2cos^2x*cos2x+2cos^2x*cos2x-4sin^2x*cos^2x)=sinx(1+cos2x+2cos^2x+cos^2(2x)+4cos^2x*cos2x-sin^2(2x))=sinx(2cos^2(2x)+cos2x+2cos^2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+cos2x+1+cos2x+4cos^2x*cos2x)=sinx(2cos^2(2x)+2cos(2x)+2(1+cos2x)*cos2x+1)=sinx(2cos^2(2x)+2cos2x+2cos2x+2cos^2(2x)+1)=sinx(4cos^2(2x)+4cos(2x)+1)=sinx*(2cos(2x)+1)^2

теперь раскладываем cosx+cos3x+cos5x
cosx+cos3x+cos5x=cosx+cos(2x+x)+cos(2x+3x)=cosx+cos2x*cosx-sin2x*sinx+cos2x*cos3x-sin2x*sin3x=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*cos(x+2x)-2sinx*cosx*sin(x+2x)=cosx+cos2x*cosx-2sin^2x*cosx+cos2x*(cosx*cos2x-2sin^2x*cosx)-2sinx*cosx*sin(x+2x)=cosx(1+cos2x-2sin^2x+cos^2(2x)-2sin^2x*cos2x-2sinx*(sinx*cos2x+cosx*sin2x))=cosx(2cos2x+cos^2(2x)-2sin^2x*cos2x-2sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-4sin^2x*cos2x-4sin^2x*cos^2x)=cosx(2cos2x+cos^2(2x)-2(1-cos2x)*cos2x-sin^2(2x))=cosx(2cos2x+cos^2(2x)-sin^2(2x)-2cos2x+2cos^2(2x))=cosx(2cos^2(2x)-1+2cos2x-2cos2x+2cos^2(2x))=cosx(4cos^2(2x)-1)=cosx(2cos2x-1)(2cos2x+1)
подставляем в уравнение:
(sinx*(2cos(2x)+1)^2)/(cosx*(2cos2x-1)(2cos2x+1))+2tgx=0
tgx*(2cos(2x)+1)/(2cos2x-1)+2tgx=0
tgx*((2cos(2x)+1)/(2cos2x-1)+2)=0
tgx=0
x1=pi*n
(2cos2x+1)/(2cos2x-1)+2=0
(2cos2x+1+4cos2x-2)/(2cos2x-1)=0
(6cos2x-1)/(2cos2x-1)=0
6cos2x-1=0
cos2x=1/6
2x=arccos(1/6)+2pi*n
x2=0,5arccos(1/6)+pi*n
2x=-arccos(1/6)+2pi*n
x3=-0,5arccos(1/6)+pi*n
ответ: x1=pi*n; x2=0,5arccos(1/6)+pi*n; x3=-0,5arccos(1/6)+pi*n
4,7(90 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ