М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LeviAckerman13
LeviAckerman13
06.05.2022 15:54 •  Алгебра

Найти все значения а ,для которых неравенство ( а2 -1 ) х2 + 2 (а -1) х + 2 > 0 верно для любого x (- r

👇
Ответ:
skubelinavika
skubelinavika
06.05.2022
(а²-1)х² + 2(а -1)х+2 > 0,   перед нами неравенство не выше второй степени.
нужно рассмотреть 2 случая:
1) Если данное неравенство квадратное (графиком квадратной функции является парабола), значит должно выполнятся два условия, чтобы неравенство было верно для любого х∈R.
-Ветви параболы должны быть направлены вверх ( а²-1>0 )
-парабола должна находится выше оси х (D<0)

\left \{ {{a ^{2} -1\ \textgreater \ 0} \atop {D\ \textless \ 0}} \right. \ \left \{ {{(a-1)(a+1)\ \textgreater \ 0} \atop {(2(a-1)) ^{2} -4*2(a ^{2} -1)\ \textless \ 0}} \right. \ \left \{ {{(a-1)(a+1)\ \textgreater \ 0} \atop {4(a-1)(a-1-2(a+1))\ \textless \ 0}} \right. \\ \left \{ {{(a-1)(a+1)\ \textgreater \ 0} \atop {4(a-1)(a-1-2a-2)\ \textless \ 0}} \right. \ \left \{ {{(a-1)(a+1)\ \textgreater \ 0} \atop {4(a-1)(-a-3)\ \textless \ 0}\ |:(-4)} \right. \ \left \{ {{(a-1)(a+1)\ \textgreater \ 0} \atop {(a-1)(a+3)\ \textgreater \ 0}} \right. \\ \\ \left \{ {{x\ \textless \ -1,\ x\ \textgreater \ 1} \atop {x\ \textless \ -3, \ x\ \textgreater \ 1}} \right.
x∈(-∞;-3) U (1;+∞)

2 случай) если данное неравенство линейное, то есть а²-1=0, 
(а-1)(а+1)=0
а=1 или а=-1
подставляем 1 в неравенство:
(1²-1)х² + 2(1 -1)х+2 > 0
2>0 - это верное неравенство, которое не зависит от х, значит а=1 входит в ответ.

подставляем -1:
((-1)²-1)х² + 2((-1)-1)х+2 > 0
-4х+2>0
-4x>-2
x<0.5 - это неравенство зависит от х, то есть верно только при некоторых значениях х, значит а=-1, не входит в ответ
ОТВЕТ:x∈(-∞;-3) U [1;+∞)
4,5(31 оценок)
Открыть все ответы
Ответ:
keshatroy86e7
keshatroy86e7
06.05.2022
Если я поняла правильно, то то, что связывает путь и время - это скорость. Скорость - это производная от S(t). Потом находим нулевую точку:
1) S(t) = ((t³ / 3) - t⇒v(t)=s`(t)=((t³ / 3) - t)`=(1/3)·3t²-1=t²-1; 
v(t)=0;
т.е. t²-1=0⇒t²=1⇒t=1(t≠-1, т.к. путь отрицательным быть не может)
2)S(t) = ((t⁴) / 4) - t³ + 2 ⇒v(t)=s`(t)=((t⁴) / 4) - t³ + 2)`= (1/4)·4t³-3t²=t³-3t²;
v(t)=0; 
т.е. t³-3t²=0⇒t²(t-3)=0⇒t=3
3)S(t) = (t⁵ / 5) - t³ + 4⇒v(t)=s`(t)=((t⁵ / 5) - t³ + 4)`=(1/5)·5t⁴-3t²=t⁴-3t²
v(t)=0;
т.е. t⁴-3t²=0 ⇒t²(t²-3)=0⇒t²=3⇒t=√3
4) S(t) = t² - t ⇒v(t)=s`(t)=(t²-t)`=2t-1
v(t)=0;
т.е. 2t-1=0⇒2t=1⇒t=1/2
Как-то так.
4,7(80 оценок)
Ответ:
nurkenalmazbek
nurkenalmazbek
06.05.2022
F(x)=2ax+|x²-8x+7|
x²-8x+7=0
x1+x2=8 U x1*x2=7
x1=1 U x2=7
1)x∈(-∞;1) U (7;∞)
f(x)=2ax+x²-8x+7=x²-x(8-2a)+7
a=1⇒ордината вершины -наименьшее значение функции
абсцисса вершины равна (8-2a)/2=4-a
y=(4-a)²-(4-a)(8-2a)+7=16-8a+a²-32+8a+8a-2a²+7=-a²+8a-9>1
a²-8a+10<0
D=64-40=24
a1=(8-2√6)/2=4-√6 U a2=4+√6
a∈(4-√6;4+√6)
2)x∈[1;7]
y=2ax-x²+8x-7=-x²+x(8+2a)-7
абсцисса вершины равна (8+2a)/2=4+a
y=-(4+a)²+(4+a)(8+2a)-7=-16-8a-a²+32+8a+8a+2a²-7=a²+8a+9>1
a²+8a+8>0
D=64-32=32
a1=(-8-4√2)/2=-4-2√2 U a2=-4+2√2
a∈(-∞;-4-2√2) U (-4+2√2;∞)
ответ a∈(-∞;-4-2√2) U (-4+2√2;4+√6)
4,6(36 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ