Желтых 4 ж. зеленых --- 6 ж. взято 3 ж. Р(1 др.) ? Решение. 1-ы й с п о с о б. 4 + 6 = 10 всего жетонов. Р(все жел.) = (4/10)*(3/9)*(2/8) = 1/30 Р(все зел.) = (6/10)*(5/9)*(4/8) = 1/6 События вынимания жетона в очередной раз того же цвета не зависят друг от друга, поэтому их вероятности перемножаются. Но с каждым разом вероятности вынуть жетон опять того же цвета уменьшается, т.к. жетоны назад не возвращаются, Становится меньше и жетонов этого цвета, и вообще меньше жетонов. Вероятность вынимания жетонов одного цвета складывается из вероятности вынуть все зеленые или все желтые. Р(один.) = Р(все жел.) + Р(все зел.) = 1/30 + 1/6 = (5+1)/30 = 6/30 = 1/5 = 0,2 Суммарная вероятность вынуть 3 жетона с окраской равна 1 (других цветов и неокрашенных жетонов нет), она складывается из вероятностей вынуть какой-то набор. Вероятность трех одинаковых найдена. Для вычисления вероятности того, в наборе будут представлены оба цвета, надо из 1 вычесть вероятность трех одинаковых. Р(1 др.) = 1 - Р(один.) = 1 - 0,2 = 0,8 ответ:0,8 2-о й с п о с о б. 4 + 6 = 10 всего жетонов. С₁₀³ = 10!/(3!(10-3)!) = 10!/(3!*7!) = (10*9*8*7!)/(1*2*3*7!)=120 всего вынуть три жетона из десяти С₄² * С₆¹ = (4!/(2!*2!))*(6!/(1*5!)) = ((4*3*2)/(2*2))*((6*5!)/5!)) = 36 всего вынуть два желтых и один зеленый жетон. С₆² * С₄¹ = (6!/(2!*4!))*(4!/3!) = ((6*5*4!)/(2*4!))*(4*3!/3!) = 60 всего вынуть два зеленых жетона и один желтый 36 + 60 = 96 всего благоприятных дающих нужный результат). Р(1 др.) = 96/120 = 8/10 = 0,8 вероятность появления жетона другого цвета в наборе из трех вынутых . ответ:0,8
Перепишем уравнение: sinx-sin5x=cos5x-cosx 2*sin(x-5x)/2*cos(x+5x)/2=-2*sin(5x-x)/2*sin(5x+x)/2 -2*sin2x*cos3x=-2*sin2x*sin3x -2*sin2x*cos3x+2*sin2x*sin3x=0 2*sin2x*(sin3x-cos3x)=0 Произведение равно нулю, когда один из множителей равен нулю. 1) sin2x=0 <=> 2x=pi*m <=> x=pi*m*2 В этой серии наибольший отрицательный корень будет при m=-1: x=-pi/2 2) sin3x-cos3x=0 Т.к. по формулам приведения cos3x=sin(pi/2-3x), то получим: sin3x-sin(pi/2-3x)=0 2*sin(3x-pi/2+3x)/2*cos(3x+pi/2-3x)/2=0}br> 2*sin(3x-pi/4)*cos(pi/4)=0 Сокращаем константы: sin(3x-pi/4)=0 3x-pi/4=pi*n x=pi/12+pi*n/3 В это серии имеем, что при n=0 корень ещё положительный: x=pi/12, а при n=-1 получаем х=pi/12-pi/3=-3*pi/12=-pi/4. Т.к. -pi/4>-pi/2, то этот корень и будет наибольшим отрицательным. ответ: -pi/4.
15/1=3х/8
120=3х
х=40