task/22381953
Скорость одного велосипедиста обозначаем x км/ч , другого _ y км / ч . * * * Из условия задачи следует ,что x ≠ y , допустим x > y > 0 * * *
До места встречи один км /ч* 1 ч =x км, другой _S₂ =y км/ч*1ч =y км.Один на пути 30 км затрачивает t₁ =30/x час, другой _t₂ = 30 / y час .
Можем составить систему уравнений : { x + y =25 ; 30 / y - 30 / x = 1 .
{ y = 25 - x ; 30 / (25 - x) - 30 / x = 1 .⇔ { y = 25 - x ; 30x -30(25 - x) = x(25 - x ) .
30x - 750 + 30x = 25x - x² ⇔ x² +35x - 750 = 0 ⇒ [ x = 15 ; x = - 50 →.
* * * D = 35² - 4*1*(-750) =1225 +3000 =4225 =65² ; x₁ , ₂ = (-35 ± 65)/2 * * *
у =25 - x =25 -15 = 10 (км/ч) . ответ : 15 км/ч , 10 км/ч .
* * * y² - 85y + 750 = 0 ⇔ [ y = 10 ; y = 75 > 25 →посторонний корень. * * *
Пусть скорость первого велосипедиста равна х км/ч, а второго - у км/ч. Первый и второй велосипедисты проехали 25 км их расстояние (x+у)*1=(x+y) км
На расстоянии 30 км первый велосипедист проезжает на 1 ч быстрее другого,т.е. время затраченное первым велосипедистом равно 30/х, а вторым - 30/у. На весь путь затратили (30/x - 30/y) ч.
Решим систему уравнений
Домножим левую и правую части уравнения на (25-y)y ≠ 0 , получим
По теореме Виета
не удовлетворяет условию, так как скорость не может быть отрицательной.
км/ч - скорость второго велосипедиста
км/ч - скорость первого велосипедиста.
ответ: скорость первого велосипедиста равна 10 км/ч, а второго - 15 км/ч.
x^2+y^2=8,5
Возводим первое выражение в квадрат
x^2+2xy+y^2=16
2xy=7,5
Вычитаем из второго:
(x-y)^2=8,5-7,5=1
Возможны 2 случая:
1) x-y=1
2x=5
x=2,5
y=1,5
2) x-y=-1
2x=3
x=1,5
у=2,5
Проверка:
Достаточно проверить второе равенство 2,25+6,25=8,5=17/2
ответ: два решения х=2,5 у=1,5 или х=1,5 у=2,5